Abstract
Pyridoacridines are a class of strictly marine‐derived alkaloids that constitute one of the largest chemical families of marine alkaloids. During the last few years, both natural pyridoacridines and their analogues have constituted excellent targets for synthetic works. They have been the subject of intense study due to their significant biological activities; cytotoxic, antibacterial, antifungal, antiviral, insecticidal, anti‐HIV, and anti‐parasitic activities. In the present review, 95 pyridoacridine alkaloids isolated from marine organisms are discussed in term of their occurrence, biosynthesis, biological activities, and structural assignment.
Keywords: Alkaloids, Pyridoacridine, Ascidians, Biosynthesis, Biological activity
Contributor Information
Sabrin R. M. Ibrahim, Email: sabrinshaur@gmail.com.
Gamal A. Mohamed, Email: gamals2001@yahoo.com
References
- 1. Ding Q., Chichak K., Lown J. W., Curr. Med. Chem. 1999, 6, 1. [PubMed] [Google Scholar]
- 2. Groundwater P. W., Munawar M. A., Adv. Heterocycl. Chem. 1997, 70, 89. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3. Molinski T. F., Chem. Rev. 1993, 93, 1825. [Google Scholar]
- 4. Marshall K. M., Barrows L. R., Nat. Prod. Rep. 2004, 21, 731. [DOI] [PubMed] [Google Scholar]
- 5. Schmitz F. J., Agarwal S. K., Gunasekera S. P., J. Am. Chem. Soc. 1983, 105, 4835. [Google Scholar]
- 6. Delfourne E., Bastide J., Med. Res. Rev. 2003, 23, 234. [DOI] [PubMed] [Google Scholar]
- 7. Dias N., Vezin H., Lansiaux A., Bailly C., Top. Curr. Chem. 2005, 253, 89. [Google Scholar]
- 8. Kim J., Pordesimo E. O., Toth S. I., Schmitz F. J., Altena I. V., J. Nat. Prod. 1993, 56, 1813. [DOI] [PubMed] [Google Scholar]
- 9. Kobayashi J., Cheng J., Wälchli M. R., Nakamura H., Hirata Y., Sasaki T., Ohizumi Y., J. Org. Chem. 1988, 53, 1800. [Google Scholar]
- 10. Kobayashi J., Tsuda M., Tanabe A., Ishibashi M., Cheng J., Yamamura S., Sasak T., J. Nat. Prod. 1991, 54, 1634. [DOI] [PubMed] [Google Scholar]
- 11. McDonald L. A., Eldredge G. S., Barrows L. R., Ireland C. M., J. Med. Chem. 1994, 37, 3819. [DOI] [PubMed] [Google Scholar]
- 12. Appleton D. R., Pearce A. N., Lambert G., Babcock R. C., Copp B. R., Tetrahedron 2002, 58, 9779. [Google Scholar]
- 13. Copp B. R., Jompa J., Tahir A., Ireland C. M., J. Org. Chem. 1998, 63, 8024. [Google Scholar]
- 14. Charyulu G. A., McKee T. C., Ireland C. M., Tetrahedron Lett. 1989, 30, 4201. [Google Scholar]
- 15. Clement J. A., Kitagaki J., Yang Y., Saucedo C. J., O'Keefe B. R., Weissman A. M., McKee T. C., McMahon J. B., Bioorg. Med. Chem. 2008, 16, 10022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Rudi A., Benayahu Y., Goldberg I., Kashman Y., Tetrahedron Lett. 1988, 29, 3861. [Google Scholar]
- 17. Rudi A., Kashman Y., J. Org. Chem. 1989, 54, 5331. [Google Scholar]
- 18. Koren‐Goldshlager G., Aknin M., Gaydou E. M., Kashman Y., J. Org. Chem. 1998, 63, 4601. [Google Scholar]
- 19. Molinski T. F., Ireland C. M., J. Org. Chem. 1989, 54, 4256. [Google Scholar]
- 20. Carroll A. R., Scheuer P. J., J. Org. Chem. 1990, 55, 4426. [Google Scholar]
- 21. Ibrahim S. R. M., Mohamed G. A., Elkhayat E. S., Fouad M. A., Proksch P., Bull. Facu. Pharm. Cairo Univ. 2013, 51, 292. [Google Scholar]
- 22. Eder C., Schupp P., Proksch P., Wray V., Steube K., Müller C. E., Frobenius W., Herderich M., van Soest R. W. M., J. Nat. Prod. 1998, 61, 301. [DOI] [PubMed] [Google Scholar]
- 23. Nilar, Sidebottom P. J., Carté B. K., Butler M. S., J. Nat. Prod. 2002, 65, 1198. [DOI] [PubMed] [Google Scholar]
- 24. Bontemps N., Gattacceca F., Long C., Thomas O. P., Banaigs B., J. Nat. Prod. 2013, 76, 1801. [DOI] [PubMed] [Google Scholar]
- 25. Nukoolkarn V. S., Saen‐oon S., Rungrotmongkol T., Hannongbua S., Ingkaninan K., Suwanborirux K., Bioorg. Med. Chem. 2008, 16, 6560. [DOI] [PubMed] [Google Scholar]
- 26. Wei X., Bugni T. S., Harper M. K., Sandova I. T., Manos E. J., Swift J., Van Wagoner R. M., Jones D. A., Ireland C. M., Mar. Drugs 2010, 8, 1769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. Barnes E. C., Said N. A. B. M., Williams E. D., Hooper J. N. A., Davis R. A., Tetrahedron 2010, 66, 283. [Google Scholar]
- 28. Bontemps N., Bry D., S. López‐Legentil, A. Simon‐Levert, C. Long, B. Banaigs, J. Nat. Prod. 2010, 73, 1044. [DOI] [PubMed]
- 29. Carroll A. R., Cooray N. M., Poiner A., Scheuer P. J., J. Org. Chem. 1989, 54, 4231. [Google Scholar]
- 30. Kashman Y., Koren‐Goldshlager G., Aknin M., Gravalos D. G., U. S. Pat. US6350743B1 (2002, 26 Feb).
- 31. Torres Y. R., Bugni T. S., Berlinck R. G. S., Ireland C. M., Magalhães A., Ferreira A. G., da Rocha R. M., J. Org. Chem. 2002, 67, 5429. [DOI] [PubMed] [Google Scholar]
- 32. Aoki S., Wei H., Matsui K., Rachmat R., Kobayashi M., Bioorg. Med. Chem. 2003, 11, 1969. [DOI] [PubMed] [Google Scholar]
- 33. Kobayashi J., Cheng J., Nakamura H., Ohizumi Y., Tetrahedron Lett. 1988, 29, 1177. [Google Scholar]
- 34. Bontemps N., Bonnard I., Banaigs B., Combaut G., Francisco C., Tetrahedron Lett. 1994, 35, 7023. [Google Scholar]
- 35. M. Estermeier, ‘Isolierung, Strukturaufklärung und Synthese von Pyrido[2,3,4‐kl]acridin‐Alkaloiden aus der Seeanemone Calliactis parasitica (Actiniaria)’, Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig‐Maximilians‐Universität München, 2004.
- 36. Zeng C., Ishibashi M., Matsumoto K., Nakaike S., Kobayash J., Tetrahedron 1993, 49, 8337. [Google Scholar]
- 37. Schmitz F. J., DeGuzman F. S., Hossain M. B., van der Helm D., J. Org. Chem. 1991, 56, 804. [Google Scholar]
- 38. Feng Y., Davis R. A., Sykes M. L., Avery V. M., Carroll A. R., Camp D., Quinn R. J., Tetrahedron Lett. 2010, 51, 2477. [Google Scholar]
- 39. Tran T. D., Pham N. B., Quinn R. J., Eur. J. Org. Chem. 2014, 4805. [Google Scholar]
- 40. Plubrukarn A., Davidson B. S., J. Org. Chem. 1998, 63, 1657. [Google Scholar]
- 41. Gunawardana G. P., Kohmoto S., Gunasekera S. P., McConnell O. J., Koehn F. E., J. Am. Chem. Soc. 1988, 110, 4856. [Google Scholar]
- 42. Gunawardand G. P., Kohmoto S., Burres N. S., Tetrahedron Lett. 1989, 30, 4359. [Google Scholar]
- 43. Bry D., Banaigs B., Long C., Bontemps N., Tetrahedron Lett. 2011, 52, 3041. [Google Scholar]
- 44. de Guzman F. S., Carte B., Troupe N., Faulkner D. J., Harper M. K., Concepcion G. P., Mangalindan G. C., Matsumoto S. S., Barrows L. R., Ireland C. M., J. Org. Chem. 1999, 64, 1400. [Google Scholar]
- 45. Tasdemir D., Marshall K. M., Mangalindan G. C., Concepción G. P., L. R. Barrows, M. K. Harper, C. M. Ireland, J. Org. Chem. 2001, 66, 3246. [DOI] [PubMed]
- 46. Bloor S. J., Schmitz F. J., J. Am. Chem. Soc. 1987, 109, 6134. [Google Scholar]
- 47. Agrawal M. S., Bowden B. F., Nat. Prod. Res. 2007, 21, 782. [DOI] [PubMed] [Google Scholar]
- 48. Gunawardana G. P., Koehn F. E., Lee A. Y., Clardy J., He H., Faulkner D. J., J. Org. Chem. 1992, 57, 523. [Google Scholar]
- 49. Koren‐Goldshlager G., Aknin M., Kashman Y., J. Nat. Prod. 2000, 63, 830. [DOI] [PubMed] [Google Scholar]
- 50. Viracaoundin I., Faure R., Gaydou E. M., Aknin M., Tetrahedron Lett. 2001, 42, 2669. [Google Scholar]
- 51. Rudi A., Benayahu Y., Goldberg I., Kashman Y., Tetrahedron Lett. 1988, 29, 6655. [Google Scholar]
- 52. He H., Faulkner D. J., J. Org. Chem. 1991, 56, 5369. [Google Scholar]
- 53. Gellerman G., Rudi A., Kashman Y., Tetrahedron Lett. 1993, 34, 1823. [Google Scholar]
- 54. Skyler D., Heathcock C. H., J. Nat. Prod. 2002, 65, 1573. [DOI] [PubMed] [Google Scholar]
- 55. Kijjoa A., Wattanadilok R., Campos N., Nascimento M. S. J., Pinto M., Herz W., Mar. Drugs. 2007, 5, 6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56. Bishop M. J., Ciufolini M. A., J. Am. Chem. Soc. 1992, 114, 10081. [Google Scholar]
- 57. Lindsay B. S., Pearce A. N., Copp B. R., Synth. Commun. 1997, 27, 2587. [Google Scholar]
- 58. Luedtke N. W., Hwang J. S., Glazer E. C., Gut D., Kol M., Tor Y., ChemBioChem 2002, 3, 766. [DOI] [PubMed] [Google Scholar]