Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2006 Apr 27;25(9):807–814. doi: 10.1111/j.1365-2222.1995.tb00022.x

Airway permeability

C G A PERSSON 1,, M ANDERSSON 2, L GREIFF 2, C SVENSSON 2, J S ERJEFÄLT 3, F SUNDLER 3, P WOLLMER 4, U ALKNER 5, I ERJEFÄLT 5, B GUSTAFSSON 5, M LINDEN 5, M NILSSON 5
PMCID: PMC7162050  PMID: 8564718

The content is available as a PDF (807.6 KB).

References

  • 1. Mygind N, Pipkorn U. Eds Allergic and vasomotor rhinitis: Pathophysiological aspects. Munksgard, Copenhagen 1987; 1–223. [Google Scholar]
  • 2. Erjefält I, Persson CGA. Allergen, bradykinin, and capsaicin increase outward but not inward macromolecular permeability of guinea‐pig tracheobronchial mucosa. Clin Exp Allergy 1991; 21:217–24. [DOI] [PubMed] [Google Scholar]
  • 3. Greiff L, Erjefält I, Wollmer P, Pipkorn U, Persson CGA. Effects of histamine, ethanol, and a detergent on exudation and absorption across guinea pig airways mucosa in vivo. Thorax 1991; 46:700–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Greiff L, Wollmer P, Pipkorn U, Persson CGA. Absorption of 51Cr EDTA across the human nasal airway barriers in the presence of topical histamine. Thorax 1991; 46:630–2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Persson CGA, Erjefält I, Alkner U et al. Plasma exudation as a first line respiratory mucosal defence. Clin Exp Allergy 1991; 21:17–24. [DOI] [PubMed] [Google Scholar]
  • 6. Persson CGA, Erjefält I, Gustafsson B, Luts A. Subepithelial hydrostatic pressure may regulate plasma exudation across the mucosa. Int Arch Allergy Appl Immunol 1990; 92:148–53. [DOI] [PubMed] [Google Scholar]
  • 7. Gustafsson BG, Persson CGA. Asymmetrical effects of increases in hydrostatic pressure on macromolecular movement across the airway mucosa. A study in guinea‐pig tracheal tube preparation. Clin Exp Allergy 1991; 21:121–6. [DOI] [PubMed] [Google Scholar]
  • 8. Erjefält JS, Greirr, L , Sundler F, Persson CGA. Basal cells promptly flatten out at detachment of the columnar epithelium in human and guinea‐pig airways. Eur Respir J abstr. (in press). [Google Scholar]
  • 9. Erjefält JS, Erjefält I, Sundler F, Persson CGA. Micro‐circulation‐derived factors in airway epithelial repair in vivo. Microvasc Res 1994; 48:161–78. [DOI] [PubMed] [Google Scholar]
  • 10. Erjefält JS, Erjefält I, Sundler F, Persson CGA. In vivo restitution of airway epithelium. Cell Tissue Res (in press). [DOI] [PubMed] [Google Scholar]
  • 11. Marchand F. Ein Neuer Fall von Asthma bronchial mit anatomischer Untersuchung. Deutsch Arch Klin Med 1918; 127:184–209. [Google Scholar]
  • 12. Fraenkel A. Zur pathologischen Anatomic des Bronchia‐lasthmas. Z Klin Med 1898; 35:559–72. [Google Scholar]
  • 13. Davies RJ, Devalia JL. Epithelial cell dysfunction in rhinitis In: Busse WW, Holgate ST. Eds. Asthma and rhinitis. Blackwell Science, Oxford , 1995:612–4. [Google Scholar]
  • 14. Persson CGA, Laitinen L. Eds. Epithelial pathology in asthma. A target for drug therapy. Eur Resp Rev 1994:1–381. [Google Scholar]
  • 15. Holt PG, McMenamin C, Nelson D. Primary sensitisation to inhalant allergens during infancy. Pediatr Allergy Immunol 1990; 1:3–13. [DOI] [PubMed] [Google Scholar]
  • 16. Meltzer SJ. Bronchial asthma as phenomenon of anaphylaxis. JAMA 1910; 50:1021–4. [Google Scholar]
  • 17. Persson CGA. Permeability changes in obstructive airway disease In: Sluiter H. et al, eds. Bronchitis IV. Assen : Vangorcum, 1989; 236–46. [Google Scholar]
  • 18. Salvaggio JE, Cavanaugh JJA, Lowell FC, Leskowitz S. A comparison of the immunologic responses of normal and atopic individuals to intranasally administered antigen. J Allergy 1964; 35:62–9. [DOI] [PubMed] [Google Scholar]
  • 19. Salvaggio J, Kayman H, Leskowitz S. Immunologic responses of atopic and normal individuals to aerosolized dextran. J Allergy 1966; 38:31–9. [Google Scholar]
  • 20. Richardson JB, Hogg JC, Bouchard T, Hall L. Localization of antigen in experimental bronchoconstriction in guinea pigs. J Allergy Clin Immunol 1973; 52:172–81. [DOI] [PubMed] [Google Scholar]
  • 21. Boucher RC, Range V, Pare PD et al. Effect of histamine and methacholine in guinea pig tracheal permeability to HRP. J Appl Physiol 1978; 45:939–48. [DOI] [PubMed] [Google Scholar]
  • 22. Ranga V, Powers MA, Padilla M et al. Effect of allergic bronchoconstriction on airways epithelial permeability to large polar solutes in the guinea pig. Am Rev Respir Dis 1983; 128:1065–70. [DOI] [PubMed] [Google Scholar]
  • 23. Buckle FG, Cohen AB. Nasal mucosal hyperpermeability to macromolecules in atopic rhinitis and extrinsic asthma. J Allergy Clin Immunol 1975; 55:213–21. [DOI] [PubMed] [Google Scholar]
  • 24. Cohen MB, Ecker EE, Breitbart JR, Rudolph JA. The rate of absorption of ragweed pollen material from the nose. J Immunol 1993; 18:419–25. [Google Scholar]
  • 25. Kontou‐Karakitsos K, Salvaggio JE, Mathews KP. Comparative nasal absorption of allergens in atopic and non‐atopic subjects. J Allergy Clin Immunol 1975; 55:241–8. [DOI] [PubMed] [Google Scholar]
  • 26. Jahnke V. Ultrastruktur der allergischen Nasenschleimhaut des Menschen. Z Laryngol Rhinol 1972; 51:152–62. [PubMed] [Google Scholar]
  • 27. Inagaki M, Sakakura Y, Itoh H, Ukai K, Miyoshi Y. Macromolecular permeability of the tight junction of the human nasal mucosa. Rhinology 1985; 23:213–21. [PubMed] [Google Scholar]
  • 28. Laitinen LA, Laitinen A, Persson CGA. Role of epithelium In: Weiss EB, Segal MS, eds. Bronchial asthma. Boston : Little, Brown, 1990:296–308. [Google Scholar]
  • 29. Kondo M, Finkbeiner WE, Widdicombe JH. Changes in permeability of dog tracheal epithelium in response to hydrostatic pressure. Am J Physiol 262 1992:LI76–LI82. [DOI] [PubMed] [Google Scholar]
  • 30. Herbert CA, Edwards D, Boot JR, Robinson C. Stimulated eosinophils and proteinases augment the transepithelial flux of albumin in bovine bronchial mucosa. Br J Pharmacol 1993; 110:840–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Yamaya M, Sekizawa K, Masuda et al. Oxidants affect permeability and repair of the cultured human tracheal epithelium. Am J Physiol 268 1995:L284–L293. [DOI] [PubMed] [Google Scholar]
  • 32. Greiff L, Wollmer P, Svensson C, Andersson M, Persson CGA. Effect of seasonal allergic rhinitis on airway mucosal absorption of Chromiun‐51 ‐labelled EDTA. Thorax 1993; 48:648–50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Persson CGA, Svensson C, Greiff L et al. The use of the nose to study the inflammatory response of the respiratory tract. Thorax 1992; 47:993–1000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Persson CGA. Airway epithelium and microcirculation. Eur Respir Rev 1994, 4; 23:352–62. [Google Scholar]
  • 35. Erjefält I, Luts A, Persson CGA. Appearance of airway absorption and exudation tracers in guinea‐pig tracheo‐bronchial lymph nodes. J Appl Physiol 1993; 74:817–24. [DOI] [PubMed] [Google Scholar]
  • 36. Greiff L, Alkner U, Pipkorn U, Persson CGA. The ‘nasal pool’ device applies controlled concentrations of solutes on human nasal airway mucosa and samples its surface exudations/secretions. Clin Exp Allergy 1990; 20:253–9. [DOI] [PubMed] [Google Scholar]
  • 37. Persson CGA. Plasma exudation in the airways: mechanisms and function. Eur Respir J 1991; 4:1268–74. [PubMed] [Google Scholar]
  • 38. Tormey JMcD, Diamond JM. The ultrastructural route of fluid transport in rabbit gall bladder. J Gen Physiol 1967; 50:2031–60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Van Os CH, Wiedner G, Wright EM. Volume flows across gallbladder epithelium induced by small hydrostatic and osmotic gradients. J Membrane Biol 1979; 49:1–20. [DOI] [PubMed] [Google Scholar]
  • 40. Granger DN, Kvietys PR, Wilborn NA, Mortilland NA, Taylor AE. Mechanisms of glucagon‐induced intestinal secretion. Am J Physiol 1980; 239:G30–G38. [DOI] [PubMed] [Google Scholar]
  • 41. Erjefält JS, Erjefält I, Sundler F, Persson CGA. Epithelial pathways for luminal entry of bulk plasma. Clin Exp Allergy 1995; 25:187–95. [DOI] [PubMed] [Google Scholar]
  • 42. Erjefält I, Erjefält JS, Greiff L, Wollmer P, Sundler F, Persson CGA. Plasma exudation, epithelial integrity and mucosal absorption ability in airways challenged with PAF and H2O2 . Am Rev Respir Dis 1992; 147:A455. [Google Scholar]
  • 43. Walsh JJ, Dietlein LF, Low FN, Burch GE, Mogabgab WJ. Bronchotracheal response in human influenza. Arch Int Med 1961; 108:376–88. [DOI] [PubMed] [Google Scholar]
  • 44. Rydén L, Edman P. Effect of polymers and microspheres on the nasal absorption of insulin in rats. Int J Pharm 1992; 83:1–10. [Google Scholar]
  • 45. Greiff L, Wollmer P, Andersson M, Persson CGA. Human nasal absorption of 51Cr‐EDTA in smokers and control subjects. Clin Exp Allergy 1994; 24:1036–40. [DOI] [PubMed] [Google Scholar]
  • 46. Persson CGA. Airway mucosal exudation of plasma as a measure of subepithelial inflammation. In: Chung F, Barnes P, eds. Pharmacology of the Respiratory Tract. Lung Biology in Health and Disease, New York , Dekker , 1993; 483–504.
  • 47. Andersson M, Greiff L, Svensson C, Persson C. Mechanisms of nasal hyper‐reactivity. Eur Arch Otorhinolaryngol 1995; 252:S22–S26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Persson CGA, Gustafsson B, Luts A, Sundler F, Erjefält I. Toluene diisocyanate produces an increase in airway tone that outlasts the inflammatory exudation phase. Clin Exp Allergy 1991; 21:715–24. [DOI] [PubMed] [Google Scholar]
  • 49. Erjefält I, Persson CGA. Increased sensitivity to toluene diisocyanate (TDI) in airways previously exposed to low doses of TDI. Clin Exp Allergy 1992; 22:854–62. [DOI] [PubMed] [Google Scholar]
  • 50. Fabbri LM, Mapp C. Bronchial hyperresponsiveness, airway inflammation and occupational asthma induced by toluene diisocyanate. Clin Exp Allergy 1991; 21:42–7. [DOI] [PubMed] [Google Scholar]
  • 51. Greiff L, Andersson M, Åkerlund A et al. Microvascular exudative hyperresponsiveness in human coronavirus‐induced common cold. Thorax 1994; 49:121–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Greiff L, Lundin S, Svensson C et al. Peptide absorption in human allergic airways. Eur Respir J abstr (in press). [Google Scholar]
  • 53. Svensson C, Andersson M, Greiff L, Alkner U, Persson CGA. Exudative hyperresponsiveness to histamine in seasonal allergic rhinitis. Clin Exp Allergy (in press). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Halpin DMG, Currie D, Jones B, Leigh TR, Evans TW. Permeability of bronchial mucosa to 113mIn‐DTPA in asthma and the effects of salmeterol. Eur Respir J 1993; 6:512s. [Google Scholar]
  • 55. Evans MJ, Plopper CG. The role of basal cells in adhesion of columnar epithelium to airway basement membrane. Am Rev Respir Dis 1989; 138:481–3. [DOI] [PubMed] [Google Scholar]
  • 56. Montefort S, Roberts JA, Beasley R, Holgate ST, Roche WR. The site of disruption of the bronchial epithelium in asthmatic and non‐asthmatic subjects. Thorax 1992; 47:499–503. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Allergy are provided here courtesy of Wiley

RESOURCES