Abstract
The establishment of cell culture‐derived vaccine production requires the development of appropriate downstream processes. Until today, many of the downstream methods applied originate from egg‐derived production processes. These methods have often been slightly modified in order to account for the new demands. However, efforts are currently underway to optimize these processes focusing, for example, on ion exchange or affinity based membrane adsorption chromatography. This review covers the main aspects relevant for the downstream processing of egg and mammalian cell culture‐derived whole influenza viruses.
Keywords: Downstream Processing, Influenza Virus, Vaccine production
Efforts to control the annual spread of influenza virus have centered on prophylactic vaccinations. The majority of licensed vaccines for human use are still produced in eggs. An overview of unit operations used for the downstream processing of egg and cell culture‐derived influenza viruses is given, focusing on commonly applied chromatographic methods.
References
- 1. Pau M. G., Ophorst C. et al., Vaccine 2001, 19 (17–19), 2716. [DOI] [PubMed] [Google Scholar]
- 2. Kistner O., Barrett P. N. et al., Vaccine 1998, 16 (9–10), 960. [DOI] [PubMed] [Google Scholar]
- 3. R. Brands, J. Visser et al., in Inactivated Influenza Vaccines Prepared in Cell Culture (Eds: F. Brown, et al.), Karger, Basel 1999.
- 4. Genzel Y., Fischer M. et al., Vaccine 2006, 24 (16), 3261. [DOI] [PubMed] [Google Scholar]
- 5. Voeten J. T. M., Brands R. et al., Vaccine 1999, 17 (15–16), 1942. [DOI] [PubMed] [Google Scholar]
- 6. Tree J. A., Richardson C. et al., Vaccine 2001, 19 (25–26), 3444. [DOI] [PubMed] [Google Scholar]
- 7. Phelan M. A., Mayner R. E. et al., J. Biol. Stand. 1980, 8 (3), 233. [DOI] [PubMed] [Google Scholar]
- 8. Iordan A. G., Mazhul L. A. et al., Voprosy Virusologii 1983, 2, 150. [PubMed] [Google Scholar]
- 9. Bruhl P., Kerschbaum A. et al., Vaccine 2001, 19 (9–10), 1149. [DOI] [PubMed] [Google Scholar]
- 10. Wickramasinghe S. R., Kalbfuß B. et al., Biotechnol. Bioeng. 2005, 92 (2), 199. [DOI] [PubMed] [Google Scholar]
- 11. Kalbfuss B., Wolff M. et al., J. Membrane Sci. 2007, 299 (1–2), 251. [Google Scholar]
- 12. Neurath A. R., Rubin B. A. et al., Arch. Biochem. Biophys. 1967, 120 (1), 238. [DOI] [PubMed] [Google Scholar]
- 13. Opitz L., Salaklang J. et al., Vaccine 2007, 25 (5), 939. [DOI] [PubMed] [Google Scholar]
- 14. Palache A. M., Brands R. et al., J. Infect. Dis. 1997, 176, S20. [DOI] [PubMed] [Google Scholar]
- 15. Cox H. R., Van Der Scheer J. et al., J. Immunol. 1947, 56 (2), 149. [PubMed] [Google Scholar]
- 16. Polson A., Keen A. et al., J. Hygiene 1972, 70 (2), 255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Abraham A., Sivanandan V. et al., Am. J. Vet. Res. 1984, 45 (4), 959. [PubMed] [Google Scholar]
- 18. Reimer C. B., Baker R. S. et al., Science 1966, 152 (3727), 1379. [DOI] [PubMed] [Google Scholar]
- 19. Arora D. J. S., Tremblay P. et al., Anal. Biochem. 1985, 144 (1), 189. [DOI] [PubMed] [Google Scholar]
- 20. Nayak D. P., Lehmann S. et al., J. Chromatogr. B 2005, 823 (2), 75. [DOI] [PubMed] [Google Scholar]
- 21. Bahnemann H. G., Vaccine 1990, 8 (4), 299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Kalbfuss B., Genzel Y. et al., Biotechnol. Bioeng. 2007, 97 (1), 73. [DOI] [PubMed] [Google Scholar]
- 23. Wood J. M., Schild G. C. et al., J. Biol. Stand. 1977, 5 (3), 237. [DOI] [PubMed] [Google Scholar]
- 24. European Pharmacopoeia 6.0 2008, 810. [Google Scholar]
- 25. Kapteyn J. C., Saidi M. D. et al., Vaccine 2006, 24 (16), 3137. [DOI] [PubMed] [Google Scholar]
- 26. Elford W J., Andrewes C. H., Brit. J. Exp. Path. 1936, 17, 422. [Google Scholar]
- 27. Stanley W. M., J. Exp. Med. 1944, 79 (3), 255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. Friedewald W. F., Pickels E. G., J. Exp. Med. 1944, 79 (3), 301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. Bardiya N., Bae J. H., Appl. Microbiol. Biotech. 2005, 67 (3), 299. [DOI] [PubMed] [Google Scholar]
- 30. Reimer C. B., Baker R. S. et al., J. Bacteriol. 1966, 92 (4), 1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Reimer C. B., Baker R. S. et al., J. Virol. 1967, 1 (6), 1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32. Gerin J. L., Anderson N. G., Nature 1969, 221 (5187), 1255. [DOI] [PubMed] [Google Scholar]
- 33. Subramanian S., Altaras G. M. et al., Biotechnol. Prog. 2005, 21 (3), 851. [DOI] [PubMed] [Google Scholar]
- 34. Morenweiser R., Gene Ther. 2005, 12 (S1), S103. [DOI] [PubMed] [Google Scholar]
- 35. Saha K., Lin Y. et al., J. Virol. Methods 1994, 46 (3), 349. [DOI] [PubMed] [Google Scholar]
- 36. Geraerts M., Michiels A. et al., J. Gene Med. 2005, 7 (10), 1299. [DOI] [PubMed] [Google Scholar]
- 37. Grzenia D. L., Wickramasinghe S. R. et al., Sep. Sci. Technol. 2007, 42 (11), 2387. [Google Scholar]
- 38. Michel J.‐P., Gingery M. et al., J. Virol. Methods 2004, 122 (2), 195. [DOI] [PubMed] [Google Scholar]
- 39. Dea S., Elazhary M. A. S. Y. et al., Can. Vet. J. 1980, 21, 171. [PMC free article] [PubMed] [Google Scholar]
- 40. Webster R. G., Bean W. J. et al., Microbiol. Mol. Biol. Rev. 1992, 56 (1), 152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41. Opitz L., Lehmann S. et al., J. Biotechnol. 2007, 131 (3), 309. [DOI] [PubMed] [Google Scholar]
- 42. Heyward J. T., Klimas R. A. et al., Arch. Virol. 1977, 55 (1–2), 107. [DOI] [PubMed] [Google Scholar]
- 43. Polson A., Prep. Biochem. 1993, 23 (1–2), 207. [DOI] [PubMed] [Google Scholar]
- 44. Loa C. C., Lin T. L. et al., J. Virol. Methods 2002, 104 (2), 187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45. Transfiguracion J., Jaalouk D. E. et al., Hum. Gene Ther. 2003, 14 (12), 1139. [DOI] [PubMed] [Google Scholar]
- 46. Kalbfuss B., Wolff M. et al., Biotechnol. Bioeng. 2007, 96 (5), 932. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47. Segura M. D. L. M., Kamen A. et al., Biotechnol. Bioeng. 2005, 90 (4), 391. [DOI] [PubMed] [Google Scholar]
- 48. Brügmann M., Drommer W. et al., Dtsch. Tieraerztl. Wochenschr. 1997, 104 (6), 196. [PubMed] [Google Scholar]
- 49. Matheka H. D., Armbruster O., Z. Naturforsch. 1956, 11b, 187. [Google Scholar]
- 50. Knight C. A., J. Exp. Med. 1944, 79 (3), 285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51. Müller R. H., Proc. Soc. Exp. Biol. Med. 1950, 73, 239. [Google Scholar]
- 52. Puck T., Sagik B., J. Exp. Med. 1953, 97, 807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53. Matheka H. D., Armbruster O., Z. Naturforsch. 1956, 11b, 193. [Google Scholar]
- 54. Zhilinskaya I. N., El‐Saed L. H. et al., Acta Virol. 1972, 16 (5), 436. [PubMed] [Google Scholar]
- 55. Taikova N. V., Sidorenko E. V. et al., Mikrobiol. Zh. 1971, 3, 334. [PubMed] [Google Scholar]
- 56. Nayak D. P., Hui E. K.‐W. et al., Virus Res. 2004, 106 (2), 147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57. Goyal S. M., Hanssen H. et al., Appl. Environ. Microbiol. 1980, 39 (3), 500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58. Sweet C., Stephen J. et al., Immunochemistry 1974, 11 (6), 295. [DOI] [PubMed] [Google Scholar]
- 59. Gerentes L., Kessler N. et al., J. Virol. Methods 1996, 58, 155. [DOI] [PubMed] [Google Scholar]
- 60. Kristiansen T., Sparrman M. et al., J. Biosci. 1983, 5 (S1), 149. [Google Scholar]
- 61. Hayman M. J., Skehel J. J. et al., FEBS Lett. 1973, 29 (2), 185. [DOI] [PubMed] [Google Scholar]
- 62. Vanlandschoot P., Beirnaert E. et al., Arch Virol. 1996, 141 (9), 1715. [DOI] [PubMed] [Google Scholar]
- 63. Varki A., Glycobiology 1993, 3 (2), 97. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64. I. Kalashnikova, N. Ivanova et al., Anal. Chem., in press. DOI: 10.1021/ac702258t
- 65. Mckimm‐Breschkin J. L., Colman P. M. et al., Angew. Chem. Int. Ed. 2003, 42 (27), 3118. [DOI] [PubMed] [Google Scholar]
- 66. S. Wohlert, Ph.D. Thesis, Technische Hochschule Aachen 2002.
- 67. Holmquist L., Nilsson G., Acta Pathol. Microbiol. Scand. [B] 1979, 87, 129. [DOI] [PubMed] [Google Scholar]
- 68. D. C. Patel, R. G. Luo, in Adsorption and Its Application in Industry and Environmental Protection (Ed: A. Dabrowski), Elsevier, Amsterdam 1999.
- 69. Rabenstein D., Nat. Prod. Rep. 2002, 19, 312. [DOI] [PubMed] [Google Scholar]
- 70. Shukla D., Liu J. et al., Cell 1999, 99 (1), 13. [DOI] [PubMed] [Google Scholar]
- 71. Trybala E., Bergstrom T. et al., J. Biol. Chem. 1998, 273 (9), 5047. [DOI] [PubMed] [Google Scholar]
- 72. Chen Y., Maguire T. et al., Nat. Med. 1997, 3 (8), 866. [DOI] [PubMed] [Google Scholar]
- 73. Marks R. M., Lu H. et al., J. Med. Chem. 2001, 44 (13), 2178. [DOI] [PubMed] [Google Scholar]
- 74. Qiu J., Handa A. et al., Virology 2000, 269 (1), 137. [DOI] [PubMed] [Google Scholar]
- 75. Harrop H., Rider C., Glycobiology 1998, 8 (2), 131. [DOI] [PubMed] [Google Scholar]
- 76. M. Peterka, A. Strancar et al., WO 2008/006780 A1 2008.
- 77. H. Kost, WO/2007/080123 2007.
- 78. Huang P. Y., Baumbach G. A. et al., Bioorgan. Med. Chem. 1996, 4 (5), 699. [DOI] [PubMed] [Google Scholar]
- 79. Huang P. Y., Carbonell R. G., Biotechnol. Bioeng. 1995, 47 (3), 288. [DOI] [PubMed] [Google Scholar]
- 80. Necina R., Amatschek K. et al., J. Chromatogr. B Biomed. Sci. Appl. 1998, 715 (1), 191. [DOI] [PubMed] [Google Scholar]
- 81. Sorci M., Boi C. et al., Desalination 2006, 199 (1–3), 550. [Google Scholar]
- 82. Kramberger P., Peterka M. et al., J. Chromatogr. A 2007, 1144 (1), 143. [DOI] [PubMed] [Google Scholar]
- 83. Williams S. L., Eccleston M. E. et al., Biotechnol. Bioeng. 2005, 89 (7), 783. [DOI] [PubMed] [Google Scholar]
- 84. Han B., Specht R. et al., J. Chromatogr. A 2005, 1092 (1), 114. [DOI] [PubMed] [Google Scholar]
- 85. Specht R., Han B. et al., Biotechnol. Bioeng. 2004, 88 (4), 465. [DOI] [PubMed] [Google Scholar]
- 86. Konz J. O., Lee A. L. et al., Biotechnol. Prog. 2005, 21 (2), 466. [DOI] [PubMed] [Google Scholar]