Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2008 Apr 29;36(7):572–577. doi: 10.1002/clen.200700189

Impact of Health on Particle Size of Exhaled Respiratory Aerosols: Case‐control Study

Guillaume Hersen 1, Stéphane Moularat 1, Enric Robine, Evelyne Géhin 2, Sandrine Corbet 3, Astrid Vabret 3, François Freymuth 3
PMCID: PMC7162260  PMID: 32313583

Abstract

Individuals with viral infection could possibly emit an infectious aerosol. The distinction between exhaled breaths of infected and healthy individuals should facilitate an understanding of the airborne transmission of infections. In this context, the present study is aimed at distinguishing healthy individuals from symptomatic ones by the study of their exhaled breath. A setup composed of a modified hood connected to an electrical low pressure impactor, which allows for the study of a wide range of particle sizes (from 7 nm to 10 μm), has been developed in order to collect exhaled breaths. This setup has been used with seventy eight volunteers. The results obtained using Principal Component Analysis (PCA) showed that exhaled breaths of individuals without symptoms have statistical similarities and are different from those of individuals with symptoms. This separation was made by the greater proportional emission by individuals with symptoms of particles collected on stages 3 (D 50 = 0.09 μm), 6 (D 50 = 0.38 μm), 8 (D 50 = 0.95 μm), 10 (D 50 = 2.40 μm), and 12 (D 50 = 4.02 μm) of the impactor. There was not a specific size distribution obtained for the individuals with symptoms. As a consequence, further research on the exhaled breath should be undertaken with symptomatic volunteers and would require the analysis of this wide range of particle sizes.

Keywords: Bioaerosol, Exhaled breath, Particle size, Principle Component Analysis, Virus


Research Article: The distinction between the exhaled breaths of infected and healthy individuals should facilitate an understanding of the airborne transmission of infections. This study is aimed at distinguishing healthy individuals from symptomatic ones by the study of their exhaled breath using a novel setup to collect exhaled breaths for the study of particle sizes. The results were analyzed using Principal Component Analysis (PCA).

graphic file with name CLEN-36-572-g001.jpg

References

  • 1. Huraux J.‐M., Nicolas J.‐C., Agut H., Peigue‐Lafeuille H., Traité de Virologie Médicale, Estem, Paris 2003, 686.
  • 2. Alford R. H., Kasel J. A., Gerone P. J., Knight V., Human influenza resulting from aerosol inhalation, Proc. Soc. Exp. Biol. Med. 1966, 122, 800. [DOI] [PubMed] [Google Scholar]
  • 3. Cate T. R. et al., Production of tracheobronchitis in volunteers with rhinovirus in a small‐particle aerosol, Am. J. Epidemiol. 1965, 81 (1), 95. [DOI] [PubMed] [Google Scholar]
  • 4. Couch R. B. et al., Effect of route of inoculation on experimental respiratory viral disease in volunteers and evidence for airborne transmission, Bacteriol. Rev. 1966, 30, 517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Moser M. R. et al., An outbreak of influenza aboard a commercial airliner, Am. J. Epidemiol. 1979, 110 (1), 1. [DOI] [PubMed] [Google Scholar]
  • 6. Bourgueil E., Hutet E., Cariolet R., Vannier P., Experimental infection of pigs with the porcine respiratory coronavirus (PRCV): measure of viral excretion, Veterinary Microbiol. 1992, 31, 11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Brockmeier S. L., Lager K. M., Experimental airborne transmission of porcine reproductive and respiratory syndrome virus and bordetella bronchiseptica , Veterinary Microbiol. 2002, 89, 267. [DOI] [PubMed] [Google Scholar]
  • 8. Elazhary M. A. S. Y. et al., Experimental infection of calves with bovine respiratory syncytial virus (Quebec strain), Can. J. Comp. Med. 1980, 44, 390. [PMC free article] [PubMed] [Google Scholar]
  • 9. Kristensen C. S. et al., Experimental airborne transmission of PRRS virus, Veterinary Microbiol. 2004, 99, 197. [DOI] [PubMed] [Google Scholar]
  • 10. Mars M. H., Bruschke C. J. M., Van Oirschot J. T., Airborne transmission of BHV1, BRSV, and BVDV among cattle is possible under experimental conditions, Veterinary Microbiol. 1999, 66, 197. [DOI] [PubMed] [Google Scholar]
  • 11. Mars M. H. et al., Airborne transmission of bovine herpes virus 1 infections in calves under field conditions, Veterinary Microbiol. 2000, 76, 1. [DOI] [PubMed] [Google Scholar]
  • 12. Otto P. et al., A model for respiratory syncytial virus (RSV) infection based on experimental aerosol exposure with bovine RSV in calves, Comp. Immun. Microbiol. Infect. Dis. 1996, 19 (2), 85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Knight V., Airborne transmission and pulmonary deposition of respiratory viruses, VIth Int. Symp. on Aerobiology, 1973, pp. 175–182.
  • 14. Ménache M. G., Miller F. J., Raabe O. G., Particle inhalability curves for humans and small laboratory animals, Ann. Occup. Hyg. 1995, 39 (3), 317. [PubMed] [Google Scholar]
  • 15. Morrow P. E., Physics of airborne particles and their deposition in the lung, Ann. N. Y. Acad. Sci. 1980, 353, 71. [DOI] [PubMed] [Google Scholar]
  • 16. Renoux A., Boulaud D., Les Aérosols; Physique et Métrologie, Lavoisier Tec et Doc, 1998, 301.
  • 17. Turner C. E., Jennison M. W., Edgerton H. E., Public health applications of high‐speed photography, Am. J. Public Health Nations Health 1941, 31, 319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Duguid J. P., The size and duration of air carriage of respiratory droplets and droplet nuclei, J. Hyg. 1946, 44, 471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Loudon R. G., Roberts R. M., Droplet expulsion from the respiratory tract, Am. Rev. Respir. Dis. 1967, 95, 435. [DOI] [PubMed] [Google Scholar]
  • 20. Gerone P. J. et al., Assessment of experimental and natural viral aerosols, Bacteriol. Rev. 1966, 30, 576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Papineni R. S., Rosenthal F. S., The size distribution of droplets in the exhaled breath of healthy human subjects, J. Aerosol Med. 1997, 10 (2), 105. [DOI] [PubMed] [Google Scholar]
  • 22. Fennelly K. P. et al., Cough‐generated aerosols of Mycobacterium tuberculosis: a new method to study infectiousness, Am. J. Respir. Crit. Care Med. 2004, 169, 604. [DOI] [PubMed] [Google Scholar]
  • 23. Bello‐Pujol S. et al., Development of three multiplex RT‐PCR assays for the detection of 12 respiratory RNA viruses, J. Virol. Methods 2005, 126 (1–2), 53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Hersen G. et al., Etude de l'exposition aux aérosols viraux dans les environnements intérieurs, Congrès Français sur les Aérosols, Paris 2006.
  • 25. Lebart L., Morineau A., Piron M., Statistique Exploratoire Multidimensionnelle, 2nd ed., Dunod, Paris 1997, p. 436.
  • 26. Moularat S., Etude de la contamination fongique des environnements intérieurs par la détermination et la mesure de traceurs chimiques spécifiques: application à l'hygiène de l'habitat, Ph.D. Thesis, Université de Marne‐la‐Vallée 2005.
  • 27. Park S. et al., Principal component analysis and discriminant analysis (PCA‐DA) for discriminating profiles of terminal restriction fragment lenght polymorphism (T‐RFLP) in soil bacterial communities, Soil Biol. Biochem. 2006, 38, 2344. [Google Scholar]
  • 28. Greenacre M., Blasius J., Multiple Correspondance Analysis and Related Methods, Chapman Hall, Boca Raton 2006, p. 608.

Articles from Clean are provided here courtesy of Wiley

RESOURCES