Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2005 Jul 19;11(3):279–295. doi: 10.1111/j.1096-0031.1995.tb00090.x

CLADISTIC INFERENCE AND EVOLUTIONARY SCENARIOS: LOCOMOTORY STRUCTURE, FUNCTION, AND PERFORMANCE IN WATER STRIDERS

Nils Møller Andersen 1
PMCID: PMC7162302  PMID: 32313362

Abstract

Abstract — A research methodology that aims to reveal how historical changes in environmental conditions (or selective regimes) have shaped the adaptive evolution of clades is applied to the adaptive evolution of water striders and their allies (Hemiptera‐Heteroptera, Gerromorpha), a group of semiaquatic insects which includes species that are conspicuously adapted to life on the surface film of water. Based upon reconstructed phylogenies for the higher gerromorphan taxa, the hypothesis that the hygropetric zone is the ancestral one is confirmed for the Mesoveliidae, Hebridae and the clade comprising the Paraphrynoveliidae, Macroveliidae and Hydrometridae, but not for the Hermatobatidae and Veliidae. There is no support for the hypothesis that the intersection zone was a sort of transitional zone during the ecological evolution of pleustonic bugs. It is shown that the unique morphological and behavioural traits of the most derived members of this group evolved after inferred historical changes in environmental conditions and therefore qualify as adaptations in the sense ofGould and Vrba (1982),Coddington (1988) andBaum and Larson (1991). Other predictions about the adaptive evolution of gerromorphan bugs do not pass the cladistic test. The study illustrates that cladistic inference is a valuable tool in clarifying and sharpening retrospective explanations of complex evolutionary scenarios.

REFERENCES

  1. Ambruster W.S.. 1992. Phylogeny and the evolution of plant‐animal interactions. BioScience 42: 12–20. [Google Scholar]
  2. Andersen N.M.. 1976. A comparative study of locomotion on the water surface in semiaquatic bugs (Insecta, Hemiptera, Gerromorpha). Vidensk. Medd. Dan. Naturhist. Foren. 139: 337–396. [Google Scholar]
  3. Andersen N.M.. 1977. Fine structure of the body hair layers and morphology of the spiracles of semiaquatic bugs (Insecta, Hemiptera, Gerromorpha) in relation to life on the water surface. Vidensk. Medd. Dan. Naturhist. Foren. 140: 7–37. [Google Scholar]
  4. Andersen N.M.. 1979. Phylogenetic inference as applied to the study of evolutionary diversification of semiaquatic bugs (Hemiptera: Gerromorpha). Syst. Zool. 28: 554–578. [Google Scholar]
  5. Andersen N.M.. 1980. Hygropetric water striders of the genus Onychotrechus Kirkaldy with description of a related genus (Insecta, Hemiptera, Gerridae). Steenstrupia 6: 113–146. [Google Scholar]
  6. Andersen N.M.. 1982. The Semiaquatic Bugs (Hemiptera, Gerromorpha). Phylogeny, adaptations, biogeography, and classification. Entomonograph. 3: 1–455. [Google Scholar]
  7. Andersen N.M.. 1982. Semiterrestrial after striders of the genera Eotrechus Kirkaldy and Chimarrhometra Bianchi (Insecta, Hemiptera, Gerridae). Steenstrupia 9: 1–25. [Google Scholar]
  8. Andersen N.M.. 1989. The Old World Microveliinae (Hemiptera: Veliidae). II. Three new species of Baptista Distant and a new genus from the Oriental region. Entomol. Scand. 19: 363–380. [Google Scholar]
  9. Andersen N.M.. 1989. The coral bugs, genus Halovelia Bergroth (Hemiptera, Veliidae). II. Taxonomy of the H. malaya‐group, cladistics, ecology, biology, and biogeography. Entomol. Scand. 20: 179–227. [Google Scholar]
  10. Andersen N.M.. 1991. Cladistic biogeography of marine water striders (Hemiptera, Gerromorpha) in the Indo‐Pacific. Aust. Syst. Bot. 4: 151–163. [Google Scholar]
  11. Andersen N.M.. 1991. Marine insects: genital morphology, phylogeny and evolution of sea skaters, genus Halobates (Hemiptera, Gerridae). Zool. J. Linn. Soc. 103: 21–60. [Google Scholar]
  12. Andersen N.M.. 1993. The evolution of wing polymorphism in water striders (Gerridae): a phylogenetic approach. Oikos 67: 433–443. [Google Scholar]
  13. Andersen N.M.. 1994. The evolution of sexual size dimorphism and mating systems in water striders (Hemiptera: Gerridae): a phylogenetic approach. Écoscience 1: 208–214. [Google Scholar]
  14. Andersen N.M. and Polhemus J.T.. Water‐striders (Hemiptera: Gerridae, Veliidae, etc.) In : Cheng L., (eds.) 1976. Marine Insects. North‐Holland Publishing Company, Amsterdam . 187–224. [Google Scholar]
  15. Andersen N.M. and Weir T.A.. 1994. Austrobates rivularis gen. et sp. nov., a freshwater relative of Halobates (Hemiptera, Gerridae) with a new perspective on the evolution of sea skaters. Invertebr. Taxon. 8: 1–15. [Google Scholar]
  16. Andersen N.M., Farma A., Minelli A. and Piccoli G.. 1994. A fossil Halobates from the Mediterranean and the origin of sea skaters (Hemiptera, Gerridae). Zool. J. Linn. Soc. 112: 479–489. [Google Scholar]
  17. Andersen N.M., Spence J.R. and Wilson M.V.H.. 1993. 50 million years of structural stasis in water striders (Hemiptera, Gerridae). Am. Entomol. 39: 174–176. [Google Scholar]
  18. Arnqviust G. and Rowe L.. 1995. Sexual conflict and arms races between the sexes: a morphological adaptation for control of mating in a female insect. Proc. R. Soc. Lond. B. Biol. Sci. 261: 123–127. [Google Scholar]
  19. Baum D.A. and Larson A.. 1991. Adaptation reviewed: a phylogenetic methodology for studying character macroevolution. Syst. Zool. 40: 1–18. [Google Scholar]
  20. Brooks D.R. and Mclennan D.A.. 1991. Phylogeny, Ecology, and Behaviour. A Research Program in Comparative Biology. The University of Chicago Press, Chicago , London . [Google Scholar]
  21. Brooks D.R. and Mclennan D.A.. 1993. Comparative study of adaptive radiations with an example using parasitic flatworms (Platyhelminthes: Cercomeria). Am. Nat. 142: 755–778. [DOI] [PubMed] [Google Scholar]
  22. Carpenter J.M.. 1989. Testing scenarios: wasp social behaviour. Cladistics 5: 131–144. [DOI] [PubMed] [Google Scholar]
  23. Carpenter J.M., Strassmann J.E., Turillazzi S., Hughes C.R., Solfs C.R. and Servo R.. 1993. Phylogenetic relationships among paper wasps social parasites and their hosts (Hymenoptera: Vespidae; Polistinae). Cladistics 9: 129–146. [DOI] [PubMed] [Google Scholar]
  24. Cheng L.. 1977. The elusive sea bug Hermatobates (Heteroptera). Pan-Pac. Entomol. 53: 87–97. [Google Scholar]
  25. China W.E.. 1955. The evolution of the water bugs. Symposium on Organic Evolution. Bull. Nat. Inst. Sci., India. 7: 91–103. [Google Scholar]
  26. Coddington J.A.. 1986. The monophyletic origin of the orb web In : Shear W.A., (eds.). Spider Webs and Spider Behaviour. Stanford University Press, Palo Alto , California . 319–363. [Google Scholar]
  27. Coddington J.A.. 1988. Cladistic tests of adaptational hypotheses. Cladistics 4: 3–22. [DOI] [PubMed] [Google Scholar]
  28. Coddington J.A.. The roles of homology and convergence in studies of adaptation In : Eggleton P. and Vane‐Wright R.I., (eds.) 1994. Phylogenetics and Ecology. Academic Press, London , etc. 53–78. [Google Scholar]
  29. Darnhofer‐Demar B.. 1969. Zur Fortbewegung des Wasserläufers Gerris lacustris L. auf der Wasseroberfläche. Zool. Anz. Suppl. 32: 430–439. [Google Scholar]
  30. Darnhofer‐Demar B.. 1969. Zur Funktionsmorphologie der Wasserläufer. I. Die Morphologie des des Lokomotionsapparates von Gerris lacustris L. (Heteroptera: Gerridae). Zool. Jb. Anat. 86: 28–66. [Google Scholar]
  31. Deleporte P.. 1993. Characters, attributes and tests of evolutionary scenarios. Cladistics 9: 427–432. [DOI] [PubMed] [Google Scholar]
  32. De Pinna M.C.C.. 1991. Concepts and tests of homology in the cladistic paradigm. Cladistics 7: 367–394. [Google Scholar]
  33. Eggleton P. and Vane‐Wright R.I., (eds.) 1994. Phylogenetics and Ecology. Linnean Society Symposium Series, No. 17. Academic Press, London , San Diego , New York , Boston , Sydney , Tokyo , Toronto . [Google Scholar]
  34. Foster W.A.. 1989. Zonation, behaviour and morphology of the intertidal coral‐treader Hermatobates (Hemiptera: Hermatobatidae) in the south‐west Pacific. Zool. J. Linn. Soc. 96: 87–105. [Google Scholar]
  35. Foster W.A. and Treherne J.E.. 1980. Feeding, predation and aggregation behaviour in a marine insect, Halobates robustus Barber (Hemiptera: Gerridae), in the Galapagos Islands. Proc. R. Soc. Lond. B Biol. Sci. 209: 539–553. [Google Scholar]
  36. Frumhoff P.C. and Reeve H.K.. 1994. Using phylogenies to test hypotheses of adaptation: a critique of some current proposals. Evolution 48: 172–180. [DOI] [PubMed] [Google Scholar]
  37. Futuyma D.J.. 1986. Evolutionary Biology. 2nd edn Sinauer Associates, Sunderland , Mass . [Google Scholar]
  38. Gould S.J. and Lewontin R.. 1979. The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proc. R. Soc. Lond. B Biol. Sci. 205: 581–598. [DOI] [PubMed] [Google Scholar]
  39. Gould S.J. and Vrba E.S.. 1982. Exaptation—A missing term in the science of form. Paleobiology 8: 4–15. [Google Scholar]
  40. Harvey P.H. and Pagel M.D.. 1991. The Comparative Method in Evolutionary Biology Oxford Series in Ecology and Evolution. Oxford University Press, Oxford , New York , Tokyo . [Google Scholar]
  41. Jell P.A. and Duncan P.M.. 1986. Invertebrates, mainly insects, from the freshwater, Lower Cretaceous, Koonwarra Fossil Bed (Korumburra Group), South Gippsland, Victoria. Mem. Ass. Australas. Palaeontols 3: 111–205. [Google Scholar]
  42. Lauder G.V.. 1990. Functional morphology and systematics: Studying functional patterns in an historical context. Annu. Rev. Ecol. Syst. 21: 317–340. [Google Scholar]
  43. Lauder G.V., Leroi A.M. and Rose M.R.. 1993. Adaptations and history. Trends Ecol. Evol. 8: 294–297. [DOI] [PubMed] [Google Scholar]
  44. Leroi A.M., Rose M.R. and Lauder G.V.. 1994. What does the comparative method reveal about adaptation. Am. Nat. 143: 381–402. [Google Scholar]
  45. Losos J.B. and Miles D.B.. Adaptation, constraint, and the comparative method: Phylogenetic issues and methods In : Wainwright P.C. and Reilly S.M., (eds.) 1994. Ecological Morphology. The University of Chicago Press, Chicago , London . 60–98. [Google Scholar]
  46. Maddison W. and Maddison D.. 1992. MacClade. VER. 3.0 Analysis of Phylogeny and Character Evolution. Sinauer Associates, Sunderland , Massachusetts . [Google Scholar]
  47. Miles D.B. and Dunham A.E.. 1993. Historical perspectives in ecology and evolutionary biology: the use of phylogenetic comparative analysis. Annu. Rev. Ecol. Syst. 24: 587–619. [Google Scholar]
  48. Miller J.S. and Wenzel J.W.. 1995. Ecological characters and phylogeny. Annu. Rev. Entomol. 40: 389–415. [Google Scholar]
  49. Mitter C., Farrell B. and Wiegmann B.. 1988. The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification. Am. Nat. 132: 107–128. [Google Scholar]
  50. Polhemus J.T.. 1970. A new genus of Veliidae from Mexico (Hemiptera). Proc. Entomol. Soc. Wash. 72: 443–448. [Google Scholar]
  51. Polhemus J.T. and Andersen N.M.. 1984. A revision of Amemboa Esaki with notes on the phylogeny and ecological evolution of eotrechine water striders (Insecta, Hemiptera, Gerridae). Steenstrupia 10: 65–111. [Google Scholar]
  52. Polhemus J.T. and Chapman H.C.. 1979. Family Macroveliidae In : Menke A.S., (eds.). The semiaquatic and aquatic Hemiptera of California (Heteroptera: Hemiptera) Bull. Calif. Insect. Surv. 21 46–48. [Google Scholar]
  53. Polhemus J.T. and Polhemus D.A.. 1994. Four new genera of Microveliinae (Heteroptera) from New Guinea. Tijdschr. Entomol. 137: 57–74. [Google Scholar]
  54. Schuh R.T.. 1986. The influence of cladistics on heteropteran classification. Annu. Rev. Entomol. 31: 67–93. [Google Scholar]
  55. Schuh R.T. and Slater J.A.. 1995. True Bugs of the World (Hemiptera: Heteroptera). Comstock Publishing Associates, Cornell University Press, Ithaca , London . [Google Scholar]
  56. Simpson G.G.. 1953. The Major Features of Evolution. Columbia University Press, New York , London . [Google Scholar]
  57. Spence J.R. and Andersen N.M.. 1994. Biology of water striders: interactions between systematics and ecology. Annu. Rev. Entomol. 39: 101–128. [Google Scholar]
  58. Wanntorp H., Brooks D.R., Nilsson T., Nylin S., Ronquist F., Stearns S.C. and Wedell N.. 1990. Phylogenetic approaches in ecology. Oikos 57: 119–132. [Google Scholar]
  59. Wenzel J.W.. 1993. Application of the biogenetic law to behavioral ontogeny: a test using nest architecture in papers wasps. J. Evol. Biol. 6: 229–247. [Google Scholar]
  60. Wheeler W.C., Schuh R.T. and Bang R.. 1993. Cladistic relationships among higher groups of Heteroptera: congruence between morphological and molecular data sets. Entomol. Scand. 24: 124–138. [Google Scholar]

Articles from Cladistics are provided here courtesy of Wiley

RESOURCES