Abstract
Miniaturized analytical systems, especially microchip CE (MCE), are becoming a promising tool for analytical purposes including DNA analysis. These microdevices require a sensitive and miniaturizable detection system such as electrochemical detection (ED). Several electroactive DNA intercalators, including the organic dye methylene blue (MB), anthraquinone derivatives, and the metal complexes Fe(phen)3 2+ and Ru(phen)3 2+, have been tested for using in combination with thermoplastic olefin polymer of amorphous structure (Topas) CE‐microchips and ED. Two end‐channel approaches for integration of gold wire electrodes in CE‐ED microchip were used. A 250 μm diameter gold wire was manually aligned at the outlet of the separation channel. A new approach based on a guide channel for integration of 100 and 50 μm diameter gold wire has been also developed in order to reduce the background current and the baseline noise level. Modification of gold wire electrodes has been also tested to improve the detector performance. Application of MCE‐ED for ssDNA detection has been studied and demonstrated for the first time using the electroactive dye MB. Electrostatic interaction between cationic MB and anionic ssDNA was used for monitoring the DNA on microchips. Thus, reproducible calibration curves for ssDNA were obtained. This study advances the feasibility of direct DNA analysis using CE‐microchip with ED.
Keywords: DNA intercalators, Electrochemical detection, Gold end‐channel detector, Microchip electrophoresis, Topas
References
- 1. Manz, A. , Graber, N. , Widmer, H. M. , Sens. Actuators B 1990, 1, 244–248. [Google Scholar]
- 2. Manz, A. , Harrison, D. , Verpoorte, E. , Fettinger, J. et al., J. Chromatogr. 1992, 593, 253–258. [Google Scholar]
- 3. Li, S. F. Y. , Kricka, L. J. , Clin. Chem. 2006, 52, 37–45. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. Muck, A., Jr. , Wang, J. , Jacobs, M. , Chen, G. et al., Anal. Chem. 2004, 76, 2290–2297. [DOI] [PubMed] [Google Scholar]
- 5. Schöning, M. J. , Jacobs, M. , Muck, A. , Knobbe, D.‐T. et al., Sens. Actuators B 2005, 108, 688–694. [Google Scholar]
- 6. Liu, Y. , Ganser, D. , Schneider, A. , Liu, R. et al., Anal. Chem. 2001, 73, 4196–4201. [DOI] [PubMed] [Google Scholar]
- 7. Coltro, W. K. T. , da Silva, J. A. F. , da Silva, H. D. T. , Richter, E. M. et al., Electrophoresis 2004, 25, 3832–3839. [DOI] [PubMed] [Google Scholar]
- 8. Liu, A. L. , He, F. Y , Hu, Y. L , Xia, X. H. , Talanta 2006, 68, 1303–1308. [DOI] [PubMed] [Google Scholar]
- 9. Mela, P. , van den Berg, A. , Fintschenko, Y. , Cummings, E. B. et al., Electrophoresis 2005, 26, 1792–1799. [DOI] [PubMed] [Google Scholar]
- 10. Castaño‐Álvarez, M. , Fernández‐Abedul, M. T. , Costa‐García, A. , Electrophoresis 2005, 26, 3160–3168. [DOI] [PubMed] [Google Scholar]
- 11. Handal, M. I. , Ugaz, V. M. , Expert Rev. Mol. Diagn. 2006, 6, 29–38. [DOI] [PubMed] [Google Scholar]
- 12. Chen, L. , Ren, J. , Comb. Chem. High Throughput Screen. 2004, 7, 29–43. [DOI] [PubMed] [Google Scholar]
- 13. Liu, S. , Guttman, A. , Trends Anal. Chem. 2004, 23, 422–430. [Google Scholar]
- 14. Landers, J. P. , Anal. Chem. 2003, 75, 2919–2927. [DOI] [PubMed] [Google Scholar]
- 15. Tanyanyiwa, J. , Abad‐Villar, E. M. , Fernández‐Abedul, M. T. , Costa‐García, A. et al., Analyst 2003, 128, 1019–1022. [Google Scholar]
- 16. Abad‐Villar, E. M. , Tanyanyiwa, J. , Fernandez‐Abedul, M. T. , Costa‐Garcia, A. , Hauser, P.C. , Anal. Chem. 2004, 76, 1282–1288. [DOI] [PubMed] [Google Scholar]
- 17. Galloway, M. , Stryjewski, W. , Henry, A. , Ford, S. M. et al., Anal. Chem. 2002, 74, 2407–2415. [DOI] [PubMed] [Google Scholar]
- 18. Galloway, M. , Soper, S. A. , Electrophoresis 2002, 23, 3760–3768. [DOI] [PubMed] [Google Scholar]
- 19. Martin, R. S. , Ratzlaff, K. L. , Huyng, B. H. , Lunte, S. M. , Anal. Chem. 2002, 74, 1136–1143. [DOI] [PubMed] [Google Scholar]
- 20. Castaño‐Álvarez, M. , Fernández‐Abedul, M. T. , Costa‐García, A. , Anal. Bioanal. Chem. 2005, 382, 303–310. [DOI] [PubMed] [Google Scholar]
- 21. Lacher, N. A. , Lunte, S. M. , Martin, R. S. , Anal. Chem. 2004, 76, 2482–2491. [DOI] [PubMed] [Google Scholar]
- 22. Vickers, J. , Henry, C. S. , Electrophoresis 2005, 26, 4641–4647. [DOI] [PubMed] [Google Scholar]
- 23. Woolley, A. T. , Lao, K. , Glazer, A. N. , Mathies, R. A. , Anal. Chem. 1998, 70, 684–688. [DOI] [PubMed] [Google Scholar]
- 24. Keyton, R. S. , Roussel, T. J., Jr. , Crain, M. M. , Jackson, D. J. et al., Anal. Chim. Acta 2004, 507, 95–105. [Google Scholar]
- 25. Dawoud, A. A. , Kawaguchi, T. , Markushin, Y. , Porter, M. D. , Jankowiak, R. , Sens. Actuators B 2006, 120, 42–50. [Google Scholar]
- 26. Yan, J. L. , Du, Y. , Liu, J. F. , Cao, W. D. et al., Anal. Chem. 2003, 75, 5406–5412. [DOI] [PubMed] [Google Scholar]
- 27. Ertl, P. , Emrich, C. A. , Singhal, P. , Mathies, R. A. , Anal. Chem. 2004, 76, 3749–3755. [DOI] [PubMed] [Google Scholar]
- 28. Hebert, N. R. , Brazill, S. A. , Lab Chip 2003, 3, 241–247. [DOI] [PubMed] [Google Scholar]
- 29. Schwarz, M. A. , Galliker, B. , Fluri, K. , Kappes, T. , Hauser, P. C. , Analyst 2001, 126, 147–151. [DOI] [PubMed] [Google Scholar]
- 30. Liu, Y. , Vickers, J. A. , Henry, C. S. , Anal. Chem. 2004, 76, 1513–1517. [DOI] [PubMed] [Google Scholar]
- 31. Zeng, Y. , Chen, H. , Pang, D.‐W. , Wang, Z.‐L. , Cheng, J.‐K. , Anal. Chem. 2002, 74, 2441–2445. [DOI] [PubMed] [Google Scholar]
- 32. Wang, Y. , Chen, H. , J. Chromatogr. A 2005, 1080, 192–198. [DOI] [PubMed] [Google Scholar]
- 33. Castaño‐Álvarez, M. , Fernández‐Abedul, M. T. , Costa‐García, A. , J. Chromatogr. A 2005, 1109, 291–299. [DOI] [PubMed] [Google Scholar]
- 34. Wang, J. , Tian, B. , Sahlin, E. , Anal. Chem. 1999, 71, 5436–5440. [DOI] [PubMed] [Google Scholar]
- 35. Wang, J. , Mannino, S. , Camera, C. , Chatrathi, M. P. et al., J. Chromatogr. A 2005, 1091, 177–182. [DOI] [PubMed] [Google Scholar]
- 36. Kerman, K. , Kobayashi, M. , Tamiya, E. , Meas. Sci. Technol. 2004, 15, R1–R11. [Google Scholar]
- 37. Kelley, S. O. , Boon, E. M. , Barton, J. K. , Jackson, N. M. , Hill, M. G. , Nucleic Acids Res. 1999, 27, 4830–4837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. Boon, E. M. , Ceres, D. M. , Drummond, T. G. , Hill, M. G. , Barton, J. K. , Nat. Biotechnol. 2000, 18, 1096–1100. [DOI] [PubMed] [Google Scholar]
- 39. Hernández‐Santos, D. , González‐García, M. B. , Costa‐García, A. , Anal. Chem. 2005, 77, 2868–2874. [DOI] [PubMed] [Google Scholar]
- 40. Hernández‐Santos, D. , Díaz‐González, M. , González‐García, M. B. , Costa‐García, A. , Anal. Chem. 2004, 76, 6887–6893. [DOI] [PubMed] [Google Scholar]
- 41. Kerman, K. , Ozkan, D. , Kara, P. , Meric, B. et al., Anal. Chim. Acta 2002, 462, 39–47. [Google Scholar]
- 42. Wong, E. L. S. , Gooding, J. J. , Anal. Chem. 2003, 75, 3845–3852. [DOI] [PubMed] [Google Scholar]
- 43. Palecek E., Scheller F., Wang J. (eds.), Electrochemistry of Nucleic Acids and Proteins. Towards Electrochemical Sensors for Genomics and Proteomics, Elsevier, Amsterdam: 2005. [Google Scholar]
- 44. Palecek, E. , Fojta, M. , Anal. Chem. 2001, 73, 74A–84A. [DOI] [PubMed] [Google Scholar]
- 45. Marra, M. A. , Jones, S. J. M. , Astell, C. R. , Holt, R. A. et al., Science 2003, 300, 1399–1404. [DOI] [PubMed] [Google Scholar]
- 46. Steenken, S. , Jovanovic, S. V. , J. Am. Chem. Soc. 1997, 119, 617–618. [Google Scholar]
- 47. Wong, E. L. S. , Erohkin, P. , Gooding, J. J. , Electrochem. Commun. 2004, 6, 648–654. [Google Scholar]
- 48. Erdem, A. , Kerman, K. , Meric, B. , Akarca, U. S. , Ozsoz, M. , Anal. Chim. Acta 2000, 422, 139–149. [Google Scholar]
- 49. Kara, P. , Kerman, K. , Ozkan, D. , Meric, B. et al., Electrochem. Commun. 2002, 4, 705–709. [Google Scholar]
- 50. Wang, B. , Bouffier, L. , Semeunynck, M. , Mailley, P. et al., Bioelectrochemistry 2004, 63, 233–237. [DOI] [PubMed] [Google Scholar]
- 51. Carter, M. T. , Rodriguez, M. , Bard, A. J. , J. Am. Chem. Soc. 1989, 111, 8901–8911. [Google Scholar]
- 52. Mahadevan, S. , Palaniandavar, M. , Bioconjug. Chem., 1996, 7, 138–143. [DOI] [PubMed] [Google Scholar]
- 53. Li, H. , Xu, Z. , Ji, L.‐N. , Li, W.‐S. , J. Appl. Electrochem. 2005, 35, 235–241. [Google Scholar]
- 54. Wang, S. , Du, D. , Sensors 2002, 2, 41–49. [Google Scholar]
- 55. Yang, W. , Gooding, J. J. , Hibbert, D. B. , J. Electroanal. Chem. 2001, 516, 10–16. [Google Scholar]
- 56. Zeng, B. , Yang, Y. , Ding, X. , Zhao, F. , Talanta 2003, 61, 819–827. [DOI] [PubMed] [Google Scholar]
- 57. Zhao, F. , Zeng, B. , Pang, D. , Electroanalysis 2003, 15, 1060–1066. [Google Scholar]
- 58. Abad‐Valle, P. , Fernández‐Abedul, M. T. , Costa‐García, A. , Biosens. Bioelectron. 2007, 22, 1642–1645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59. Castaño‐Álvarez, M. , Fernández‐Abedul, M. T. , Costa‐García, A. , Ins. Sci. Technol. 2006, 34, 697–710. [Google Scholar]
- 60. Jacobson, S. C. , Hergenroder, R. , Koutny, L.B. , Warmack, R.J. , Ramsey, J. M. , Anal. Chem. 1994, 66, 1107–1113. [Google Scholar]
- 61. Rye, H. S. , Yue, S. , Wemmer, D. E. , Quesada, M. A. et al., Nucleic Acids Res. 1992, 20, 2803–2812. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62. Jurado, E. , Fernández‐Serrano, M. , Nuñez‐Olea, J. , Luzón, G. , Lechuga, M. , Chemosphere 2006, 65, 278–285. [DOI] [PubMed] [Google Scholar]
- 63. Tuite, E. , Norden, B. , J. Am. Chem. Soc. 1994, 116, 7548–7556. [Google Scholar]
