Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2002 Jan 16;297(1-2):81–86. doi: 10.1016/0014-5793(92)80332-B

An insect picornavirus may have genome organization similar to that of caliciviruses

Eugene V Koonin 1, Alexander E Gorbalenya 2
PMCID: PMC7164100  PMID: 1551442

Abstract

Computer‐assisted analysis of the amino acid sequence of the product encoded by the sequenced 3′ portion of the cricket paralysis virus (CrPV), an insect picornavirus, genome showed that this protein is homologous not to the RNA‐directed RNA polymerases, as originally suggested, but to the capsid proteins of mammalian picornaviruses. Alignment of the CrPV protein sequence with those of picornavirus and calicivirus capsid proteins demonstrated that the sequenced portion of the insect picornavirus genome encodes the C‐terminal part of VP3 and the entire VP1. Thus CrPV seems to have a genome organization distinct from that of other picornaviruses but closely resembling that of caliciviruses, with the capsid proteins encoded in the 3′ part of the genome. On the other hand, the tentative phylogenetic trees generated from the VP3 alignment revealed grouping of CrPV with hepatitis A virus, a true picornavirus, not with caliciviruses. Thus CrPV may be a picornavirus with a calicivirus‐like genome organization. Different options for CrPV genome expression are discussed.

Keywords: Picornavirus; Calicivirus; Capsid protein; RNA-polymerase; Viral genome organization; CrPV; cricket paralysis virus; FMDVO1; foot-and-mouth disease virus, serotype O1; EMCR; encephalomyocarditis virus, Rueckert strain; MENGO; Mengo virus; TMEBEAN; Theiler murine encephalomyelitis virus, strain BeAn 8386; HAV; hepatitis A virus, Los Angeles (Chiron) strain; BEV; bovine enterovirus; POLIOIM; poliomyelitis virus, serotype 1, strain Mahoney; RHINO2; 14 human rhinovirus, respective serotypes (all - picornaviruses); FeCV; feline calicivirus; RHDV; rabbit hemorrhagic disease virus (both - caliciviruses)

Koonin Eugene V. and Gorbalenya Alexander E.(1992), An insect picornavirus may have genome organization similar to that of caliciviruses, FEBS Letters, 297, doi: 10.1016/0014-5793(92)80332-B

References

  • 1. Moore N.F., Reavy B., King L.A., J. Gen. Virol., 66, (1985), 647– 659. [Google Scholar]
  • 2. King L.A., Pullin J.S.K., Stanway G., Almond J., Moore N.F., Virus Res., 6, (1987), 331– 344. [Google Scholar]
  • 3. Reavy B., Moore N.F., Virology, 131, (1983), 551– 554. [DOI] [PubMed] [Google Scholar]
  • 4. Kamer G., Argos P., Nucleic Acids Res., 12, (1984), 1194– 2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Koonin E.V., Gorbalenya A.E., Chumakov K.M., Donchenko A.P., Blinov V.M., Mol. Genetika, 7, (1987), 27– 39. [PubMed] [Google Scholar]
  • 6. Neill J.D., Reardon I.M., Heinrikson R.L., Virus Res., 11, (1991), 59– 72. [Google Scholar]
  • 7. Meyers G., Wirblich C., Thiel H.-J., Virology, 184, (1991), 664– 676. [DOI] [PubMed] [Google Scholar]
  • 8. Brodsky L.I., Drachev A.L., Tatuzov R.L., Chumakov K.M., Biopolimery i Kletka, 7, (1991), 10– 14. [Google Scholar]
  • 9. Leontovich A.M., Brodsky L.I., Gorbalenya A.E., Biopolimery i Kletka, 6, (1990), 14– 21. [Google Scholar]
  • 10. Gorbalenya A.E., Blinov V.M., Donchenko A.P., Koonin E.V., J. Mol. Evol., 28, (1989), 256– 268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Sneath P., Sokal R., Principles of Numerical Taxonomy, (1973), San Francisco [Google Scholar]
  • 12. Chumakov K.M., Yushmanov S.Yu., Mol. Genetika, (1988), 3– 9. n. 3 [PubMed] [Google Scholar]
  • 13. Koonin E.V., J. Gen. Virol., 72, (1991), 2197– 2206. [DOI] [PubMed] [Google Scholar]
  • 14. Palmenberg A.C., Semler B.L. Ehrenfeld E. Molecular Aspects of Picornavirus Infection and Detection (1989), Am. Soc. Microbiol; Washington: 211– 241. [Google Scholar]
  • 15. Acharya R., Fry E., Stuart D., Fox G., Rowlands D., Brown F., Nature, 327, (1989), 709– 716. [DOI] [PubMed] [Google Scholar]
  • 16. Tohya Y., Taniguchi Y., Takahashi E., Utagawa E., Takeda N., Miyamura K., Yamazaki S., Mikami T., Virology, 183, (1991), 810– 814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Tinsley T.W., MacCallum F.O., Robertson J.S., Brown F., Intervirology, 21, (1984), 181– 186. [DOI] [PubMed] [Google Scholar]
  • 18. Neill J.D., Virus Res., 17, (1990), 145– 160. [DOI] [PubMed] [Google Scholar]
  • 19. Strauss E.G., Strauss J.H., Schlesinger S. Schlesinger M.J. The Togaviridae and Flaviviridae (1986), Plenum; New York: 35– 90. [Google Scholar]
  • 20. Lai M.M.C., Ann. Rev. Microbiol., 44, (1990), 303– 333. [DOI] [PubMed] [Google Scholar]
  • 21. Koonin E.V., Virus Genes, 5, (1991), 273– 282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Dougherty W.G., Carrington J.C., Annu. Rev. Phytopathol., 26, (1988), 123– 143. [Google Scholar]
  • 23. Reavy B., Moore N.F., J. Gen. Virol., 55, (1981), 429– 438. [Google Scholar]
  • 24. Jackson R.J., Howell M.T., Kaminski A., Trends Biol. Chem., 15, (1990), 477– 483. [DOI] [PubMed] [Google Scholar]
  • 25. Wimmer E., Hellen C., Jang S.K., Litterst M., Molla A., Paul A., Pestova T., Witherel G., Sonnenberg N. Carrasco L. Workshop on the Regulation of Translation in Animal Virus-Infected Cells (1991), Fundacion Juan March; Madrid: 18– 19. [Google Scholar]

Articles from Febs Letters are provided here courtesy of Wiley

RESOURCES