Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 1997 Apr 1;75(2):113–126. doi: 10.1038/icb.1997.16

Molecular mimicry: Can epitope mimicry induce autoimmune disease?

Janet M Davies 1
PMCID: PMC7165643  PMID: 9107563

Abstract

Mimicry of host antigens by infectious agents may induce cross‐reactive autoimmune responses to epitopes within host proteins which, in susceptible individuals, may tip the balance of immunological response versus tolerance toward response and subsequently lead to autoimmune disease. Epitope mimicry may indeed be involved in the pathogenesis of several diseases such as post‐viral myocarditis or Chagas disease, but for many other diseases in which it has been implicated, such as insulin‐dependent diabetes mellitis or rheumatoid arthritis, convincing evidence is still lacking. Even if an epitope mimic can support a cross‐reactive T or B cell response in vitro, its ability to induce an autoimmune disease in vivo will depend upon the appropriate presentation of the mimicked host antigen in the target tissue and, in the case of T cell mimics, the ability of the mimicking epitope to induce a proliferative rather than anergizing response upon engagement of the MHC‐peptide complex with the T cell receptor. B cell presentation of mimicking foreign antigen to T cells is a possible mechanism for instigating an autoimmune response to self antigens that in turn can lead to autoimmune disease under particular conditions of antigen presentation, secondary signalling and effector cell repertoire. In this review evidence in support of epitope mimicry is examined in the light of the necessary immunological considerations of the theory.

Keywords: altered peptide ligands, autoimmunity, cross‐reactivity, epitope mimicry, molecular mimicry

References

  • 1. Oldstone MBA. Molecular mimicry and autoimmune disease. Cell 1987; 50: 819–820. [DOI] [PubMed] [Google Scholar]
  • 2. Bulter P, Hamilton‐Miller J, Baum H, Burroughs AK. Detection of M2 antibodies in patients with recurrent urinary tract infection using an ELISA and purified PBC specific antigens. Evidence for a molecular mimicry mechanism in the pathogenesis of primary biliary cirrhosis? Biochem. Mol. Biol. Int. 1995; 35: 473–85. [PubMed] [Google Scholar]
  • 3. Luo A‐M, Garza KM, Hunt D, Tung KSK. Antigen mimicry in autoimmune disease sharing of amino acid residues critical for pathogenic T cell activation. J. Clin. Invest. 1993; 92: 2117–23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Neurath AR, Strick N. Antigenic mimicry of an immunoglobulin A epitope by a hepatitis B virus cell attachment site. Virology 1990; 178: 631–4. [DOI] [PubMed] [Google Scholar]
  • 5. Carnegie PR, Lawson MA. Viral mimicry and disease. Today's Life Sci. 1990; 2: 14–20. [Google Scholar]
  • 6. Gao J‐L, Murphy PM. Human cytomegalovirus open reading frame US 28 encodes a functional β chemokine receptor. J. Biol. Chem. 1994; 269: 28 539–42. [PubMed] [Google Scholar]
  • 7. Fujinami RS. Molecular Mimicry. In: Rose NR and Mackay IR (eds) The Autoimmune Diseases II. San Diego: Academic Press Inc., 1992; 153–69. [Google Scholar]
  • 8. Smith JL, Palumbo SA, Walls I. Relationship between food‐borne bacterial pathogens and the reactive arthritides. J. Food Safety 1993; 13: 209–36. [Google Scholar]
  • 9. Silvestris F, Williams RC Jr, Dammacco F. Autoreactivity in HIV‐1 infection: Role of molecular mimicry. Clin. Immunol. Immunopathol. 1995; 75: 197–205. [DOI] [PubMed] [Google Scholar]
  • 10. Solimena M, de Camilli P. Coxsackieviruses and diabetes. Nature Med. 1995; 1: 25–26. [DOI] [PubMed] [Google Scholar]
  • 11. Srinivasappa J, Saegusa J, Prabhakar BS et al Molecular mimicry: Frequency of reactivity of monoclonal antiviral antibodies with normal tissues. J. Virol. 1986; 57: 397–401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Ray SK, Putterman C, Diamond B. Pathogenic autoantibodies are routinely generated during the response to foreign antigen: A paradigm for autoimmune disease. Proc. Natl Acad. Sci. USA 1996; 93: 2019–24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Coutinho A, Kazatchkine MD, Avrameas S. Natural autoantibodies. Curr. Opin. Immunol. 1995; 7: 812–18. [DOI] [PubMed] [Google Scholar]
  • 14. Allegretta M, Nicklas JA, Sriram S, Albertini RJ. T cells responsive to myelin basic protein in patients with multiple sclerosis. Science 1990; 247: 718–21. [DOI] [PubMed] [Google Scholar]
  • 15. Catalfamo M, Roura‐Mir C, Sospedra M et al Self‐reactive cytotoxic γδ T lymphocytes in Graves' Disease specifically recognize thyroid epithelial cells. J. Immunol. 1996; 156: 804–11. [PubMed] [Google Scholar]
  • 16. Bhardwaj V, Kumar V, Geysen H, Sercarz E. Degenerate recognition of a dissimilar antigenic peptide by myelin basic protein‐reactive T cells. J. Immunol. 1993; 151: 5000–10. [PubMed] [Google Scholar]
  • 17. Wucherpfennig KW, Strominger JL. Molecular mimicry in T cell‐mediated autoimmunity: Viral petides activate human T cell clones specific for myelin basic protein. Cell 1995; 80: 695–705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Matzinger P. Tolerance, danger and the extended family. Annu. Rev. Immunol. 1994; 12: 720–41. [DOI] [PubMed] [Google Scholar]
  • 19. Ramsdell F, Fowlkes BJ. Clonal deletion versus clonal anergy: The role of the thymus in inducing self tolerance. Science 1990; 248: 1342–8. [DOI] [PubMed] [Google Scholar]
  • 20. Nossal GJV. Negative selection of lymphocytes. Cell 1994; 76: 229–39. [DOI] [PubMed] [Google Scholar]
  • 21. Vandenbark AA, Gill T, Offner H. A myelin basic protein specific T lymphocyte line which mediates experimental autoimmune encephalomyelitis. J. Immunol. 1985; 135: 223–8. [PubMed] [Google Scholar]
  • 22. van Eden W, Hogervorst EJM, Hensen EJ, van der Zee R, van Embden JDA, Cohen IR. A cartilage‐mimicking T‐cell epitope on a 65 K mycobacterial heat‐shock protein: Adjuvant arthritis as a model for human rheumatoid arthritis. Curr. Top. Microbiol. Immunol 1989a; 145: 27–43. [DOI] [PubMed] [Google Scholar]
  • 23. Lawson CM, Odonoghue HL, Reed WD. Mouse cytomegalovirus infection induces antibodies which cross‐react with virus and cardiac myosin: A model for the study of molecular mimicry in the pathogensis of viral myocarditis. Immunology 1992; 15: 513–19. [PMC free article] [PubMed] [Google Scholar]
  • 24. Mamula MJ, Fatenejad S, Craft J. B cells process and present lupus autoantigens that initiate autoimmune T cell responses. J. Immunol. 1994; 152: 1453–61. [PubMed] [Google Scholar]
  • 25. Fujinami RS, Oldstone MBA. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: Mechanism for autoimmunity. Science 1985; 230: 1043–5. [DOI] [PubMed] [Google Scholar]
  • 26. Haaheim LR, Halse A‐K, Kvakestad R, Stern B, Normann O, Jonsson R. Serum antibodies from patients with primary Sjogren's syndrome and systemic lupus erythematosus recognise multiple epitopes on the La(SS‐B) autoantigen resembling viral protein sequences. Scand. J. Immunol. 1996; 43: 115–21. [DOI] [PubMed] [Google Scholar]
  • 27. Krisher K, Cunningham MW. Myosin: A link between Streptococci and heart. Science 1985; 227: 413–15. [DOI] [PubMed] [Google Scholar]
  • 28. Talbot PJ, Paquette J‐S, Ciurli C, Antel JP, Ouellet F. Myelin basic protein and human coronavirus 229E cross‐reactive T cells in multiple sclerosis. Ann. Neurol. 1996; 39: 23–240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Sigal LH. Molecular mimicry and Lyme Borreliosis. Ann. Neurol. 1990; 28: 195–6. [DOI] [PubMed] [Google Scholar]
  • 30. Schwimmbeck PL, Dyrberg T, Drachman DB, Oldstone MBA. Molecular mimicry and myasthenia gravis: An autoantigenic site of the acetylcholine receptor α‐subunit that has biological activity and reacts immunologically with Herpes simplex virus. J. Clin. Invest. 1989; 84: 1174–80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Yamada M, Zurbriggen A, Fujinami RS. Monoclonal antibody to Theiler's murine encephalomyelitis virus defines a determinant on myelin and oligodendrocytes, and augments demyelination in experimental allergic encephalomyelitis. J. Exp. Med. 1990; 171: 1893–907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Beisel KW, Scrinivasappa J, Prabhakar BS. Identification of a putative shared epitope between coxsackie virus B4 and alpha cardiac myosin heavy chain. Clin. Exp. Immunol. 1991; 86: 49–55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Gauntt CJ, Aizpe JM, Higdon AL et al Molecular mimicry, anti‐coxsackievirus B3 neutralizing monoclonal antibodies, and myocarditis. J. Immunol. 1995; 154: 2983–95. [PubMed] [Google Scholar]
  • 34. Hojeberg B, Ingemarsson R, Kristensson K, Lycke E, Olsson T. A monoclonal antibody against HSV type 1 ribonucleotide reductase cross‐reacts with the Po, protein of peripheral nerve myelin. J. Neurol. Sci. 1991; 106: 91–5. [DOI] [PubMed] [Google Scholar]
  • 35. Brouet J‐C, Mariette X, Gendron M‐C, Dubreuil M‐L. Monoclonal IgM from patients with peripheral demyelinating neuropathies cross‐react with bacterial polypeptides. Clin. Exp. Immunol. 1994; 96: 466–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Sabbatini A, Bombardieri S, Migliorini P. Autoantibodies from patients with systemic lupus erythematosus bind a shared sequence of SmD and Epstein‐Barr virus‐encoded nuclear antigen EBNA‐1. Eur. J. Immunol. 1993; 23: 1146–52. [DOI] [PubMed] [Google Scholar]
  • 37. Ferrari I, Levin MJ, Wallukat G et al Molecular mimicry between the immunodominant ribosomal protein P0 of Trypanosoma cruzi and a functional epitope on the human β1, adrenergic receptor. J. Exp. Med. 1995; 182: 59–65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. van Voorhis WC, Schlekewy L, Trong HL. Molecular mimicry by Trypanosoma cruzi: The F1‐160 epitope that mimics mammalian nerve can be mapped to a 12‐amino acid peptide. Proc. Natl Acad. Sci. USA 1991; 88: 5993–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Grauert MR, Houdayer M, Hontebeyrie‐joskowciz M. Trypanosoma cruzi infection enhances polyreactive antibody response in an acute case of human Chagas' disease. Clin. Exp. Immunol. 1993; 93: 85–92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Zwirner NW, Malchiodi EL, Chiaramonte MG, Fossati CA. A lytic monoclonal antibody to Trypanosoma cruzi bloodstream trypomastigotes which recognizes an epitope expressed in tissue affected in Chagas' disease. Inf ect. Immun. 1994; 62: 2483–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. van Voorhis W, Barrett L, Koelling R, Farr AG. FL‐160 proteins of Trypanosoma cruzi are expressed from a multigene family and contain two distinct epitopes that mimic nervous tissues. J. Exp. Med. 1993; 178: 681–94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Braun G, McKechnie NM, Gurr W. Molecular and immunological characterization of hr44, a human ocular component immunologically cross‐react ice with antigen Ov39 of Onchocerca volvulus . J. Exp. Med. 1995; 182: 1121–32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Donoso LA, Gregerson DS, Fling SP, Merryman C, Sery TW. The use of synthetic peptides in the study of experimental autoimmune uveitis. Curr. Eye Res. 1990; 9: 155–61. [DOI] [PubMed] [Google Scholar]
  • 44. Singh VK, Yamaki K, Abe T, Shinohara T. Molecular mimicry between uveitopathogenic site of retinal S‐antigen and Escherichia coli protein: induction of experimental autoimmune uveitis and lymphocyte cross‐reaction. Cell. Immunol. 1989b; 122: 262–73. [DOI] [PubMed] [Google Scholar]
  • 45. Hartung HP, Pollard JD, Harvey GK, Toyka KV. Immunopathogenesis and treatment of the Guillain‐Barre syndrome‐ part I. Muscle Nerve 1995; 18: 147–53. [DOI] [PubMed] [Google Scholar]
  • 46. Hartung HP, Pollard JD, Harvey GK, Toyka KV. Immunopathogenesis and treatment of the Guillain‐Barre syndrome‐ part II. Muscle Nerve 1995; 18: 154–64. [DOI] [PubMed] [Google Scholar]
  • 47. Yuki N, Taki T, Imagaki F et al A bacterium lipopolysaccharide that elicits Guillain‐Barre syndrome has a GM1 ganglioside‐like structure. J. Exp. Med. 1993; 178: 1771–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Oomes PG, Jacobs BC, Hazenberg MPH, Banffer JR, van der Meche FGA. Anti‐GM1 IgG antibodies and Campylobacter bacteria in Guillain‐Barre syndrome: Evidence of molecular mimicry. Ann. Neurol. 1995; 38: 170–5. [DOI] [PubMed] [Google Scholar]
  • 49. Yuki N, Taki T, Takahashi M et al Molecular mimicry between GQIb, ganglioside and lipopolysaccharides of Campylohacter jejuni isolated from patients with Fisher's syndrome. Ann. Neurol. 1994; 36: 791–3. [DOI] [PubMed] [Google Scholar]
  • 50. Myers MA, Mackay IR, Zimmet PA, Rowley MJ. Autoantibodies to glutamate decarboxylase in insulin dependent diabetes mellitus. In: Marshall S Home P Rizza R (eds) Diabetes Annual. Vol. 10. Amsterdam: Elsevier Science B.V., 1996; 15–36. [Google Scholar]
  • 51. Kaufman DL, Erlander MG, Clare‐Salzler M, Atkinson MA, Maclaren NK, Tobin AJ. Autoimmunity to two forms of glutamate decarboxylase in insulin‐dependent diabetes mellitus. J. Clin. Invest. 1992; 89: 283–92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Jones DB, Amstrong N. Proliferative lymphocyte responses to viruses containing sequence similarity to glutamic acid decarboxylase in insulin‐dependent diabetes. Diabetic Med. 1994; 11 (Suppl. 2): Sl7. [Google Scholar]
  • 53. Hyoty H, Hiltunen M, Knip M et al A prospective study of the role of Coxsackie B and other enterovirus infections in the pathogenesis of IDDM. Diabetes 1995; 44: 652–7. [DOI] [PubMed] [Google Scholar]
  • 54. Atkinson MA, Bowman MA, Campbell L, Darrou BL, Kaufman DL, Maclaren NK. Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin‐dependent diabetes. J. Clin Invest. 1994; 94: 2125–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Hou J, Said C, Franchi D, Dockstader P, Chatterjee NK. Antibodies to glutamic acid decarboxylase and P2‐C peptides in sera from coxsackie virus B4 infected mice and IDDM patients. Diabetes 1994; 43: 1260–6. [DOI] [PubMed] [Google Scholar]
  • 56. Lohmann T, Leslie RD, Hawa M, Geysen M, Rodda S, Londei M. Immunodominant epitopes of glutamic acid decarboxylase 65 and 67 in insulin‐dependent diabetes mellitus. Lancet 1994; 343: 1607–8. [DOI] [PubMed] [Google Scholar]
  • 57. Richter W, Mertens T, Schoel B et al Sequence homology of the diabetes‐associated autoantigen glutamate decarboxylase with coxsackie B4‐2C protein and heat shock protein 60 mediates no molecular mimicry of autoantibodies. J. Exp. Med. 1994; 180: 721–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Lonnrot M, Hyoty H, Knip M et al Antibody crossreactivity induced by the homologous regions in glutamic acid decarboxylase (GAD65) and 2C protein of coxsackievirus B4. Clin. Exp. Immunol. 1996; 104: 398–405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59. Clements GB, Galbraith DN, Taylor KW. Coxsackie B virus infection and onset of childhood diabetes. Lancet 1995; 346: 221–3. [DOI] [PubMed] [Google Scholar]
  • 60. Adams DD. A theory of the pathogenesis of rheumatic fever, glomerulo‐nephritis and other autoimmune disease triggered by infection. Clin. Exp. Immunol. 1969; 5: 105–15. [PMC free article] [PubMed] [Google Scholar]
  • 61. Williams RC. Rheumatic fever and the Streptococcus. Another look at molecular mimicry. Am. J. Med. 1983; 75: 727–30. [DOI] [PubMed] [Google Scholar]
  • 62. Dale JB, Beachy EH. Sequence of myosin‐crossreactive epitopes of streptococcal M protein. J. Exp. Med. 1986; 164: 1785–90. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Cunningham MW, Antone SM, Gulizia JM, McManus BM, Fischetti VA, Guantt CJ. Cytotoxic and viral neutralizing antibodies crossreact with streptococcal M protein, enteroviruses, and human cardiac myosin. Proc. Natl Acad. Sci. USA 1992; 89: 1320–4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64. Hirota K, Kanitani H, Nemoto K, Ono T, Miyake Y. Cross‐reactivity between human sialyl Lewis oligosaccharide and common causative oral bacteria of infective endocarditis. FEMS Immunol. Med. Microbiol. 1995; 12: 159–64. [DOI] [PubMed] [Google Scholar]
  • 65. Smiley JD, Hoffman WL. Southwestern internal medicine conference: The role of infections in the rheumatic diseases: Molecular mimicry between bacterial and human stress proteins? Am. J. Med. Sci. 1991; 301: 138–49. [DOI] [PubMed] [Google Scholar]
  • 66. Fielder M, Pirt SJ, Tarpey I et al Molecular mimicry and ankylosing spondylitis: possible role of a novel sequence in pullulanase of Klebsiella pneumoniae . FEBS Lett. 1995; 369: 243–8. [DOI] [PubMed] [Google Scholar]
  • 67. Williams RC, Malone CC, Kao K‐J. IgM rheumatoid factors react with human class I HLA molecules. J. Immunol. 1996; 156: 1684–94. [PubMed] [Google Scholar]
  • 68. Haanen JBAG, Ottenhoff THM, Lai A, Fat RFM, Soebono H, Spits H, de Vries RRP. Mycobacterium leprae‐specific T cells from a tuberculoid leprosy patient suppress HLA‐DR3‐restricted T cell responses to an immunodominant epitope in 65‐kDa hsp of Mycobacteria. J. Immunol. 1990; 145: 3898–904. [PubMed] [Google Scholar]
  • 69. Engelhard VH. Structure of peptides associated with class I and class II MHC molecules. Annu. Rev. Immunol. 1994; 12: 181–207. [DOI] [PubMed] [Google Scholar]
  • 70. Chicz RM, Lane WS, Robinson RA, Rueco M, Strominger JL, Gorga JC. Self‐peptides bound to the type I diabetes associated class II MHC molecules HLA‐DQ1 and HLA‐DQ8. Int. Immunol. 1994; 6: 1639–49. [DOI] [PubMed] [Google Scholar]
  • 71. Albani S, Roudier J. Molecular basis for the association between HLA DR4 and rheumatoid arthritis. From the shared epitope hypothesis to a peptidic model of rheumatoid arthritis. Clin. Biochem. 1992; 25: 209–12. [DOI] [PubMed] [Google Scholar]
  • 72. McCusker CT, Reid B, Green D, Gladman DD, Buchanan WW, Singal DP. HLA‐D region antigens in patients with rheumatoid arthritis. Arthritis Rheum. 1991; 34: 192–7. [DOI] [PubMed] [Google Scholar]
  • 73. Albani S, Tuckwell JE, Esparza L, Carson DA, Roudier J. The susceptibility sequence to rheumatoid arthritis is a cross‐reactive B cell epitope shared by the Escherichia coli heat shock protein dnaJ and the histocompatibility leukocyte antigen DRB10401 molecule. J. Clin. Invest. 1992; 89: 327–31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74. Born W, Hall L, Dallas A et al Recognition of a peptide antigen by heat‐shock‐reactive γδ T lymphocytes. Science 1990; 249: 67–9. [DOI] [PubMed] [Google Scholar]
  • 75. Bhar GM, Rook GAW, Al‐Saffar M, van Embden J, Stanford JL, Behbehani K. Antibody levels to mycobacteria in relation to HLA type: Evidence for non‐HLA‐linked high levels of antibody to the 65 kD heat shock protein of M. bovis in rheumatoid arthritis. Clin. Exp. Immunol. 1988; 74: 211–15. [PMC free article] [PubMed] [Google Scholar]
  • 76. Hermann E, Mayet W‐J, Lohse AW, Grevenstein J, Meyer zum buschenfelde K‐H, Fleischer B. Proliferative response to synovial fluid and peripheral blood mononuclear cells to arthritogenic and non‐arthritogenic microbial antigens and to the 65‐kDa mycobacterial heat‐shock protein. Med. Microbiol. Immunol. 1990; 179: 215–24. [DOI] [PubMed] [Google Scholar]
  • 77. Burmester GR, Altstidl U, Kalden JR, Emmrich F. Stimulatory response towards the 65 kDa heat shock protein and other mycobacterial antigens in patients with rheumatoid arthritis. J. Rheumatol. 1991; 18: 171–6. [PubMed] [Google Scholar]
  • 78. de Graeff‐Meeder ER, van der Zee R, Rijkers GT et al Recognition of human 60 kD heat shock protein by mononuclear cells from patients with juvenile chronic arthritis. Lancet 1991; 337: 1368–72. [DOI] [PubMed] [Google Scholar]
  • 79. de Graeff‐Meeder ER, Voorhorst M, van Eden W et al Antibodies to the mycobacterial 65‐kd heat‐shock protein are reactive with synovial tissue of adjuvant arthritic rats and patients with rheumatoid arthritis and osteoarthritis. Am. J. Pathol. 1990; 137: 1013–17. [PMC free article] [PubMed] [Google Scholar]
  • 80. Jarjour WN, Jefferies BD, Davis JS, Welch WJ, Mimura T, Winfield JB. Autoantibodies to human stress proteins: A survey of various rheumatic and other inflammatory diseases. Arth. Rheum. 1991; 34: 1133–8. [DOI] [PubMed] [Google Scholar]
  • 81. Karopoulos C, Rowley MJ, Handley CJ, Strugnell RA. Antibody reactivity to mycobacterial 65 kDa heat shock protein: Relevance to autoimmunity. J. Autoimmunity. 1995; 8: 235–48. [DOI] [PubMed] [Google Scholar]
  • 82. Albani S, Keystone EC, Nelson JL et al Positive selection in autoimmunity: abnormal immune responses to a bacterial dnaj antigenic determinant in patients with early rheumatoid arthritis. Nature Med. 1995; 1: 448–52. [DOI] [PubMed] [Google Scholar]
  • 83. Roudier J, Petersen J, Rhodes GH, Luka J, Carson DA. Susceptibility to rheumatoid arthritis maps to a T‐cell epitope shared by the HLA‐Dw4 DR β‐1 chain and the Epstein‐Barr virus glycoprotein gp110. Proc. Natl Acad. Sci. USA 1989; 86: 5104–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84. Fox RI, Luppi M, Pisa P, Kang H‐I. Potential role of Epstein‐Barr virus in Sjogren's syndrome and rheumatoid arthritis. J. Rheumatol. 1992; 19 (Suppl. 32): 18–24. [PubMed] [Google Scholar]
  • 85. Birkenfeld P, Haratz N, Klein G, Sulitzeanu D. Crossreactivity between the EBNA‐1 p107 peptide, collagen, and keratin: Implications for the pathogenesis of rheumatoid arthritis. Clin. Immunol. Immunopathol. 1990; 54: 14–25. [DOI] [PubMed] [Google Scholar]
  • 86. Wilson C, Ebringer A, Ahmadi K et al Shared amino acid sequences between major histocompatibility complex class II glycoproteins. type XI collagen and Proteus mirabilis in rheumatoid arthritis. Ann. Rheum. Dis. 1995; 54: 216–20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87. Hammer J, Gallazzi F, Bono E et al Peptide binding specificity of HLA‐DR4 molecules: correlation with rheumatoid arthritis association. J. Exp. Med. 1995; 181: 1847–55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88. Golding H, Robey FA, Gates FTI et al Identification of homologous regions in human immunodeficiency virus I gp41 and human MHC class II β 1 domain. J. Exp. Med. 1988; 167: 914–23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89. Vega MA, Guigo R, Smith TF. Autoimmune response in AIDS. Nature 1990; 345: 26. [DOI] [PubMed] [Google Scholar]
  • 90. Zaitseva MB, Moshnikov SA, Kozhich AT et al Antibodies to MHC class II peptides are present in HIV‐1‐positive sera. Scand. J. Immunol. 1992; 35: 267–73. [DOI] [PubMed] [Google Scholar]
  • 91. Lopalco L, de Santis C, Meneveri R et al Human immunodeficiency virus type 1 gp120 C5 region mimics the HLA class I α1 peptide‐binding domain. Eur. J. Immunol. 1993; 23: 2016–21. [DOI] [PubMed] [Google Scholar]
  • 92. Zaghouani H, Goldstein D, Shah H et al Induction of antibodies to the envelope protein of the human immunodeficiency virus by immunization with monoclonal anti‐idiotypes. Proc. Natl Acad. Sci. USA 1991; 88: 5645–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93. Borghi MO, de Santis C, Barcellini W et al Autoantibodies against β2‐microglobulin‐free HLA antigens in AIDS patients. J. Acq. Immune Def. Syndr. 1993; 6: 1114–19. [PubMed] [Google Scholar]
  • 94. Rossio JL, Bess J Jr, Henderson LE, Cresswell P, Arthur LO. HLA class II on HIV particles is functional in superantigen presentation to human T cells: implications for HIV pathogenesis. AIDS Res. Hum. Retroviruses 1995; 11: 1433–9. [DOI] [PubMed] [Google Scholar]
  • 95. Bisset LR. Molecular mimicry in the pathogenesis of AIDS: The HIV/MHC/mycoplasma triangle. Med. Hypoth. 1994; 43: 388–96. [DOI] [PubMed] [Google Scholar]
  • 96. Geysen HM, Mason TJ, Rodda SJ. Cognitive features of continuous antigenic determinants. J. Mol Recog. 1988a; 1: 32–41. [DOI] [PubMed] [Google Scholar]
  • 97. Tudos E, Cserzo M, Simon I. Predicting isomorphic residue replacements for protein design. Int. J. Pept. Protein Res. 1990; 36: 236–9. [DOI] [PubMed] [Google Scholar]
  • 98. Davies JM. Searching for molecular mimicry in lentiviral diseases of sheep and goats. PhD Thesis, Murdoch University, Western Australia, Australia, 1993. [Google Scholar]
  • 99. Lipman DJ, Pearson WR. Rapid and sensitive protein similarity searches. Science 1985; 227: 1435–41. [DOI] [PubMed] [Google Scholar]
  • 100. McLachlan AD. Repeating sequences and gene duplication in proteins. J. Mol. Biol. 1972; 64: 417–37. [DOI] [PubMed] [Google Scholar]
  • 101. McCaldon P, Argos P. Oligopeptide biases in protein sequences and their use in predicting protein coding regions in nucleotide sequences. Proteins Struct. Funct. Genet. 1988; 4: 99–122. [DOI] [PubMed] [Google Scholar]
  • 102. Ohno S. To be or not to be a responder in T‐cell responses: Ubiquitous oligopeptides in all proteins. Immunogenetics 1991; 34: 215–21. [DOI] [PubMed] [Google Scholar]
  • 103. Weise MJ, Carnegie PR. An approach to searching protein sequences for superfamily relationships or chance similarities relevant to the molecular mimicry hypothesis: Application to the basic protein of myelin. J. Neurochem. 1988; 51: 1267–73. [DOI] [PubMed] [Google Scholar]
  • 104. Davies JM, Sonoda S, Yashiki S, Osame M, Carnegie PR. Mimicry between HTLV‐I and myelin basic protein: No response in HTLV‐I‐associated myclopathy patients. J. Neuroimmunol 1992; 41: 239–44. [DOI] [PubMed] [Google Scholar]
  • 105. Davies JM, Watt NJ, Torsteindottir S, Carnegie PR. Mimicry of a 21.5 kDa myelin basic protein peptide by a maedi visna virus polymerase peptide does not contribute to the pathogenesis of encephalitis in sheep. Vet. Immunol. Immunopathol. (in press) [DOI] [PubMed] [Google Scholar]
  • 106. Dyrberg T, Oldstone MBA. Peptides as probes to study molecular mimicry and virus‐induced autoimmunity. Curr. Top. Microbiol. Immunol. 1986; 130: 25–37. [DOI] [PubMed] [Google Scholar]
  • 107. Quarantino S, Thorpe CJ, Travers PJ, Londei M. Similar antigenic surfaces, rather than sequence homology, dictate T‐cell epitope molecular mimicry. Proc. Natl Acad. Sci. USA 1995; 92: 10 398–402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108. Jameson B, Wolf H. The antigenic index: A novel algorithm for predicting antigenic deteminants. CABIOS 1988; 4: 181–6. [DOI] [PubMed] [Google Scholar]
  • 109. Delisi C, Berzofsky JA. T‐cell antigenic sites tend to be amphipathic structures. Proc. Natl Acad. Sci. VSA 1985; 82: 7042–52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110. Stern PS. Predicting antigenic sites on proteins. Trends Biotechnol. 1991; 9: 163–9. [DOI] [PubMed] [Google Scholar]
  • 111. Hammer J. New methods to predict MHC‐binding sequences within protein antigens. Curr. Opin. Immunol. 1995; 7: 263–9. [DOI] [PubMed] [Google Scholar]
  • 112. Dibrino M, Parker KC, Shiloach J et al Endogenous peptides bound to HLA‐A3 possess a specific combination of anchor residues that permit identification of potential antigenic peptides. Proc. Natl Acad. Sci. USA 1993; 90: 1508–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113. Hammer J, Belunis C, Bolin D et al High‐affinity binding of short peptides to major histocompatibility complex class II molecules by anchor combinations. Proc. Natl Acad. Sci. USA 1994; 91: 4456–60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114. Wucherpfennig KW, Yu B, Bhol K et al Structural basis for major histocompatibility complex (MHC)‐linked susceptibility to autoimmunity: Charged residues of a single MHC binding pocket confer selective presentation of self‐peptides in pemphigus vulgaris. Proc. Natl Acad. Sci. USA 1995; 92: 11 935–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115. Stuber G, Dillner J, Modrow S et al HLA‐A0201 and HLA‐B7 binding peptides in the EBV‐encoded EBNA‐1, EBNA‐2 and BZLF‐1 proteins detected in the MHC class I alleles in EBNA‐l. Int. Immunol. 1995; 7: 653–63. [DOI] [PubMed] [Google Scholar]
  • 116. Chen Y, Sidney J, Southwood S et al Naturally processed peptides longer than nine amino acid residues bind to the class I MHC molecule HLA‐A2.1 with high affinity and in different conformations. J. Immunol. 1994; 152: 2874–81. [PubMed] [Google Scholar]
  • 117. Smilek DE, Wraith DC, Hodgkinson S, Dwivedy S, Steinman L, Medevitt HO. A single amino acid change in a myelin basic protein peptide confers the capacity to prevent rather than induce experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 1991; 88: 9633–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118. Boehncke W‐H, Takeshita T, Pendleton CD et al The importance of dominant negative effects of amino acid side chain substitution in peptide‐MHC molecule interactions and T cell recognition. J. Immunol. 1993; 150: 331–41. [PubMed] [Google Scholar]
  • 119. Gautam AM, Pearson CI, Smilek DE, Stainman L, McDevitt HO. A polyalanine peptide with only five native myelin basic protein residues induces autoimmune encephalitis. J. Exp. Med. 1992; 176: 605–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120. Racioppi L, Ronchese F, Matis LA, Germain RN. Peptide‐major histocompatibility complex class II complexes with mixed agonist/antagonist properties provide evidence for ligand‐related differences in T cell receptor‐dependent intracellular signaling. J. Exp. Med. 1993; 177: 1047–60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121. Sloan‐Lancaster J, Allen PM. Significance of T‐cell stimulation by altered peptide ligands in T cell biology. Curr. Opin. Immunol. 1995; 7: 103–9. [DOI] [PubMed] [Google Scholar]
  • 122. de Magistris MT, Alexander J, Coggeshall M et al Antigen analog‐major histocompatibility complexes act as antagonists of the T cell receptor. Cell 1992; 68: 625–34. [DOI] [PubMed] [Google Scholar]
  • 123. Dong T, Boyd D, Rosenberg W et al An HLA‐B35‐ restricted epitope modified at an anchor residue results in an antagonist peptide. Eur. J. Immunol. 1996; 26: 335–9. [DOI] [PubMed] [Google Scholar]
  • 124. Wauben MHM, Boog CJP, van der Zee R, Joosten I, Schlief A, van Eden W. Disease inhibition by major histocompatibility complex binding peptide analogues of disease‐associated epitopes: More than blocking alone. J. Exp. Med. 1992; 176: 667–77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125. Franco A, Southwood S, Arrhenius T et al T cell receptor antagonist peptides are highly effcetive inhibitors of experimental allergic encephalomyelitis. Eur. J. Immunol. 1994; 24: 940–6. [DOI] [PubMed] [Google Scholar]
  • 126. Brocke S, Gijbels K, Allegretta M et al Treatment of experimental encephalomyelitis with a peptide analgoue of myelin basic protein. Nature 1996; 379: 343–6. [DOI] [PubMed] [Google Scholar]
  • 127. Callahan KM, Fort MM, Obah EA, Reinherz EL, Siliciano RF. Genetic variability in HIV‐1 gp120 affects interactions with HLA molecules and T cell receptor. J. Immunol. 1990; 144: 3341–6. [PubMed] [Google Scholar]
  • 128. Klenerman P, Rowland‐Jones S, McAdam S et al Cytotoxic T‐cell activity antagonized by naturally occurring HIV‐1 Gag variants. Nature 1994; 369: 403–7. [DOI] [PubMed] [Google Scholar]
  • 129. Bertoletti A, Sette A, Chisari F et al Natural variants of cytotoxic epitopes are T‐cell receptor antagonists for antiviral cytotoxic T cells. Nature 1994; 369: 407–10. [DOI] [PubMed] [Google Scholar]
  • 130. Burrows SR, Khanna R, Burrows JM, Moss DJ. An allo‐response in humans is dominated by cytotoxic T lymphocytes (CTL) cross‐reactive with a single Epstein‐Barr virus CTL epitope: Implications for graft‐verus‐host disease. J. Exp. Med. 1994; 179: 1155–61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131. Burrows SR, Silins SL, Moss DJ, Khanna R, Misko IS, Argaet VP. T cell receptor repertoire for a viral epitope in humans is diversified by tolerance to background major histocompatibility complex antigen. J. Exp. Med. 1995; 182: 1703–15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132. Page DM, Alexander J, Snoke K et al Negative selection of CD4+ CDS+ thymocytes by T‐cell receptor peptide antagonists. Proc. Natl. Acad Sci. USA 1994; 91: 4057–61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133. Harris DP, Vordermeicr H‐M, Singh M, Moreno C, Jurcevic S, Ivanyi J. Cross‐recognition by T cells of an epitope shared by two unrelated mycobacterial antigens. Eur. J. Immunol. 1995; 25: 3173–9. [DOI] [PubMed] [Google Scholar]
  • 134. Pinilla C, Chendra S, Appel JR, Houghten RA. Elucidation of monoclonal antibody polyspecificity using a synthetic combinatonal library. Pept. Res. 1995; 8: 250–7. [PubMed] [Google Scholar]
  • 135. Moens U, Seternes O‐M, Hey AW et al In vivo expression of a single viral DNA‐binding protein generates systemic lupus erythematosus‐related autoimmunity to double‐stranded DNA and histones. Proc. Natl Acad. Sci. USA 1995; 92: 12 393–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136. Zack DJ, Yamamoto K, Wong AL, Stempniak M, French C, Weisbart RH. DNA mimics a self‐protein that may be a target for some anti‐DNA antibodies in synthetic lupus erythematosus. J. Immunol. 1995; 154: 1987–94. [PubMed] [Google Scholar]
  • 137. Mamula MJ, Lin R‐H, Janeway CJ, Hardin JA. Breaking T cell tolerance with foreign and self co‐immunogens: A study of autimmune B and T cell epitopes of cytochrome c. J. Immunol. 1992; 149: 789–95. [PubMed] [Google Scholar]
  • 138. James JA, Gross T, Scofield H, Harley JB. Immunoglobulin epitope spreading and autoimmune disease after peptide immunization: Sm B/B'‐derived PPPGMRPP and PPPGIRGP induce spliceosome autoimmunity. J. Exp. Med. 1995; 181: 453–561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139. Huang S‐C, Pan Z, Kurien BT, James JA, Harley JB, Scofield RH. Immunisation with vesicular stomatitis virus nucleocapsid protein induces autoantibodies to the 60 kD Ro ribonucleoprotein particle. J. Investig. Med 1995; 43: 151–8. [PubMed] [Google Scholar]
  • 140. Richert JR, Robinson ED, Johnson AH et al Heterogeneity of the T‐cell receptor β gene rearrangements generated in myelin basic protein‐specific T‐cell clones isolated from a patient with multiple selcrosis. Ann. Neurol. 1991; 29: 299–306. [DOI] [PubMed] [Google Scholar]
  • 141. Bucht A, Oksenberg JR, Lindblad S, Gronberg A, Steinman L, Klareskog L. Characterization of T‐cell receptor αβ repertoire in synovial tissue from different temporal phases of rheumatoid arthritis. Scand. J. Immunol. 1992a; 35: 159–65. [DOI] [PubMed] [Google Scholar]
  • 142. Bjorkland A, Totterman TH. Is primary biliary cirrhosis an autoimmune disease. Scand. J. Gastroenterol. 1994; 29 (Suppl, 204): 32–9. [DOI] [PubMed] [Google Scholar]
  • 143. Arimilli S, Mumm J, Nag B. Antigen‐specific apoptosis in immortalized T cells by soluble MHC class II‐peptide complexes. Immunol. Cell Biol. 1996; 74: 96–105. [DOI] [PubMed] [Google Scholar]

Articles from Immunology and Cell Biology are provided here courtesy of Wiley

RESOURCES