Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2006 Apr 28;169(1):241–253. doi: 10.1111/j.1600-065X.1999.tb01319.x

Viruses, host responses, and autoimmunity

Marc S Horwitz 1, Nora Sarvetnick 1,
PMCID: PMC7165657  PMID: 10450521

Abstract

Summary: Conceptually, the initiation of autoimmune disease can be described as a three‐stage process involving both genetic and environmental influences. This process begins with the development of an autoimmune cellular repertoire, followed by activation of these autoreactive cells in response to a localized target and, finally, the immune system's failure to regulate these self reactive constituents. Viruses have long been associated with inciting autoimmune disorders. Two mechanisms have been proposed to explain how a viral infection can overcome immunological tolerance to self components and initiate an organ specific autoreactive process, these mechanisms arc molecular mimicry and bystander activation. Both pathways, as discussed here, could play pivotal roles in the development of autoimmunity without necessarily excluding each other. Transgene technology has allowed us and others to examine more closely the roles of these mechanisms in mice and to dissect the requirements for initiating disease. These results demonstrate that bystander activation is the must likely explanation fur disease development. Additional evidence suggests a further role for viruses in the reactivation and chronicity of autoimmune diseases. In this scenario, a second invasion by a previously infecting virus may restimulate already existing autoreactive lymphocytes and thereby contribute to the diversity of the immune response.

Acknowledgements
M. S. Horwitz has a Career Development Award from the American Diabetes Association N. Sarvetnick was supported by a Diabetes Interdisciplinary Research Program grant from the Juvenile Diabetes Foundation International. This is manuscript number 12320‐IMM from The Scripps Research Institute. The authors wish to thank Joanne Dodge for administrative assistance. We would also like to thank Drs Michelle Krakowski, Cecile King, Marika Falcone, Balaji Balasa and Malm Flodstrom for advice and many helpful discussions.

References

  • 1. Petersen J, et al. Detection of GAD65 antibodies in diabetes and other autoimmune disease using a simple radioligand assay. Diabetes 1994;43:459–467. [DOI] [PubMed] [Google Scholar]
  • 2. D'Alessio D. A case control study of group B coxsackie virus immunoglobulin M antibody prevalence and HLA‐DR antigens in newly diagnosed cases of insulin‐dependent diabetes mellitus. Am J Epidemiol 1992;135:1331–1335. [DOI] [PubMed] [Google Scholar]
  • 3. Atkinson M, Bowman M, Campbell L, Darrow B, Kaufman D, Maclaren K. Cellular immunity to a determinant common lo glutamate decarboxylase and coxsackie virus in insulin‐dependent diabetes. J Clin Invest 1994;94(5):2125–2129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Kaufman D, Erlander M, Clare‐Salzler M, Atkinson M, Maclaren N, Tobin A. Autoimmunity to two forms of glutamate decarboxylase in insulin‐dependent diabetes mellitus. J Clin Invest 1992;89:283–292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Theofilopoulos A. The basis of autoimmunity: part II, genetic predisposition. Immunol Today 1995;16:150–159. [DOI] [PubMed] [Google Scholar]
  • 6. Merriman T, Todd J. Genetics of autoimmune disease Curr Opin Immunol 1995;7:786–792. [DOI] [PubMed] [Google Scholar]
  • 7. Kurtze J. Epidemiologic contributions to multiple sclerosis: an overview. Neurology 1980;30:61–79. [DOI] [PubMed] [Google Scholar]
  • 8. LaPorte R, et al. Geographic differences in the risk of insulin dependent diabetes mellitus: the importance of registries. Diabetes Care 1985;8:101–107. [DOI] [PubMed] [Google Scholar]
  • 9. Rayfield E., Seto Y. Viruses and the pathogenesis of diabetes mellitus. Diabetes 1978;27:1126–1142. [DOI] [PubMed] [Google Scholar]
  • 10. Gamble D, Taylor K, Cumming H. Coxsackie viruses and diabetes. Br Med J 1973;4:260–263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Gamble D, et al. Viral antibodies in diabetes mellitus. Br Med J 1969;3:627–630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Gamble D. The epidemiology of insulin dependent diabetes with particular reference to the relationship of virus infection to its etiology. Epidemiol Rev 1980:2:49–70. [DOI] [PubMed] [Google Scholar]
  • 13. Notkins A, Yoon J‐W. Virus‐induced diabetes mellitus In: Notkins A, Oldstone M, eds. Concepts ill viral pathogenesis New York : Springer‐Verlag: 1974. p. 241–247. [Google Scholar]
  • 14. Yoon J. The role of viruses and environmental factors in the induction of diabetes. Curr Top Microbiol Immunol 1990;164:95–123. [DOI] [PubMed] [Google Scholar]
  • 15. Andersen O, Lygner T, Bergstrom T, Andersson M, Vahlne A. Viral infections trigger multiple sclerosis relapses: a prospective study. J Neurol 1993;240:417–422. [DOI] [PubMed] [Google Scholar]
  • 16. Panitch S, Bever C, Katz E, Johnson KP. Upper respiratory tract infections trigger attacks of multiple sclerosis in patients treated with interferon. J Neuroimmunol 1991;35:125. [Google Scholar]
  • 17. Sibley W. Clinical viral infections and multiple sclerosis. Lancet 1985:1985:1313–1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Craighead J. The role of viruses in the pathogenesis of pancreatic disease and diabetes mellitus. Prog Med Virol 1975;19: 161–214. [PubMed] [Google Scholar]
  • 19. Notkins A. Virus‐induced diabetes mellitus: brief review. Arch Virol 1977;54:1–17. [DOI] [PubMed] [Google Scholar]
  • 20. Rodriguez M, Oleszak E, Leibowitz J. Theiler's murine encephalomyelitis: a model of demyelination and persistence of virus, Crit Rev Immunol 1987;7:325–365. [PubMed] [Google Scholar]
  • 21. Dal Canto M, Rabinowitz S. Experimental models of virus‐induced demyelination of the central nervous system. Ann Neurol 1982;11:109–27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Mountz J, Zhou T, Bluethmann H, Wu J, Edwards CK. Apoptosis defects analyzed in TcR transgenic and fas transgenic Ipr mice. Int Rev Immunol 1994;11:321–342. [DOI] [PubMed] [Google Scholar]
  • 23. Silvestris F, Williams RC Jr, Dammacco F. Autoreactivity in HIV‐1 infection: the role of molecular mimicry. Clin Immunol Immunopathol 1995;75:197–205. [DOI] [PubMed] [Google Scholar]
  • 24. McRae BI., Vanderburg CI., Dal Canto M, Miller S. Functional evidence for epitope spreading in the releasing pathology of MS. J Exp Med 1995;182:75–85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Miller SD, et al. Persistent infection with Theiler's virus leads lo CNS autoimmunity via epitope spreading, Natl Med 1997;3:1–4. [DOI] [PubMed] [Google Scholar]
  • 26. Miller S, et al. Epitope spreading leads to myelin‐specific autoimmune responses in SJL mice chronically infected with Theiler's virus. J Neurovirol 1997:3(Suppl 1): S62–S65. [PubMed] [Google Scholar]
  • 27. Miller S et al. Evolution of the T‐cell repertoire during the course of experimental immune‐mediated demyelinating diseases. Immunol Rev 1995;144:225–244. [DOI] [PubMed] [Google Scholar]
  • 28. Sarvetnick N, Liggitt D, Pills S, Hansen S, Stewart T. Insulin‐dependent diabetes mellitus induced in transgenic mice by ectopic expression of class II MHC and interferon‐γ Cell 1988;52:773–782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Green E, Eynon E, Flavell R. Local expression of TNF‐α in neonatal NOD mice promotes diabetes by enhancing presentation of islet antigens. Immunity 1998;9:733–743. [DOI] [PubMed] [Google Scholar]
  • 30. Mueller R, Krahl T, Sarvetnick N. Tissue‐specific expression of interleukin‐4 induces extracellular matrix accumulation and extravasation of B cells. Lab Invest 1997;6:117–128. [PubMed] [Google Scholar]
  • 31. Mueller R, Bradley LM, Krahl T, Sarvetnick N. Mechanism underlying counter regulation of autoimmune diabetes. Immunity 1997;7:1–20. [DOI] [PubMed] [Google Scholar]
  • 32. Lee M, et al. Accumulation of extracellular matrix and developmental dysregulation in the pancreas by transgenic production of TGF‐01. Am J Pathol 1995;147:42–52. [PMC free article] [PubMed] [Google Scholar]
  • 33. Lee M. S, Mueller R, Wicker LS, Peterson LB, Sarvetnick N. IL‐10 is necessary and sufficient for autoimmune diabetes in conjunction with NOD MHC homozygosity. J Exp Med 1996;183:2663–2668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Mueller R, Krahl T, Sarvetnick N. Pancreatic expression of interleukin‐4 abrogates i n sul it is and autoimmune diabetes in nonobese diabetic mice. J Exp Med 1996;184:1093–1100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. DiCosmo BF, Picarella D, Flavell RA. Local production of human lL‐6 promotes insulitis but retards the onset of insulin‐dependent diabetes mellitus m non‐obese diabetic mice. Hit Immunol 1994;6:1829–1837. [DOI] [PubMed] [Google Scholar]
  • 36. King C, et al. TGl‐β1 alters APC preference, polarizing islet antigen responses toward a Th2 phenotype. Immunity 1998;8:601–613. [DOI] [PubMed] [Google Scholar]
  • 37. Horwitz MS, Evans CE, McGavern DB, Rodriguez M, Oldstone MBA. Primary demyelination in transgenic mice expressing interferon γ Nat Med 1997;3:1037–1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Akassoglou K, Probert L, Kontogeorgos G, Kollias G. Astrocyte‐specific but not neuron‐specific transmembrane TNE triggers inflammation and degeneration in the central nervous system of transgenic mice. J Immunol 1997;158:438–445. [PubMed] [Google Scholar]
  • 39. Renno T, et al. Progression from acute EAE to chronic demyelinating disease in mice expressing interferon‐γ in the CNS. Mol Cell Neurosci 1998;12:376–389. [DOI] [PubMed] [Google Scholar]
  • 40. Gangappa S, Babu J, Thomas, J. , Daheshia, M. , Rouse, B. Virus‐induced immunoinflammatory lesions in the absence of viral antigen recognition. J Immunol 1998;161:4289–4300. [PubMed] [Google Scholar]
  • 41. Vanderlugt C, et al. The functional significance of epitope spreading and its regulation by co‐stimulatory molecules. Immunol Rev 1998;164:63–72. [DOI] [PubMed] [Google Scholar]
  • 42. Kurane I, Ennis E. Immunity and immunopathology in dengue virus infections. Semin Immunol 1992;4:121–127. [PubMed] [Google Scholar]
  • 43. Ginsberg‐Fellner F, et al. Diabetes mellitus and autoimmunity in patients with the congenital rubella syndrome Rev Infect Dis 1985;7:170–177. [DOI] [PubMed] [Google Scholar]
  • 44. Jahnke U, Fischer E, Alvord E. Sequence homology between certain viral proteins and proteins related to encephalomyelitis and neuritis. Science 1985;229:282–284. [DOI] [PubMed] [Google Scholar]
  • 45. Fujinami R, Oldstone M. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: a mechanism for autoimmunity. Science 1985;230:1043–1045. [DOI] [PubMed] [Google Scholar]
  • 46. Fujinami R. Virus‐induced autoimmunity through molecular mimicry. Ann N Y Acad Sci 1988;540:210–217. [DOI] [PubMed] [Google Scholar]
  • 47. Hall R. Molecular mimicry. Adv Parisitol 1994;34:81–132. [DOI] [PubMed] [Google Scholar]
  • 48. Oldstone M. Molecular mimicry and autoimmune disease. Cell 1987;50:819–820. [DOI] [PubMed] [Google Scholar]
  • 49. Oldstone M. Molecular mimicry immune diseases. FASEB J 1998;12:1255–1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Fielder M, et al. Molecular mimicry and ankylosing spondylitis: possible role of a novel sequence in pullulanase of Klebsiella. Ann Neurol 1995;369:243–248. [DOI] [PubMed] [Google Scholar]
  • 51. Oomes P, Jacobs B, Hazenberg M, Banffer J, van der Merche F Anti‐GMI IgG antibodies and Campylobacter bacteria in Guillain‐Barre syndrome. Ann Neurol 1995;38:170–175. [DOI] [PubMed] [Google Scholar]
  • 52. Shimoda S, Nakamura M, Ishibashi H, Hayashida K, Niho Y. HLA DRB4 0101–restricted immunodominant T cell autoepitope of pyruvate dehydrogenase complex in primary biliary cirrhosis: evidence of molecular mimicry in human autoimmune diseases. J Exp Med 1995;181:1835–1845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Wucherpfennig K, Strominger J. Molecular mimicry in T cell‐mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 1995;80:695–705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Talbot J, Paquette J, Ciurli C, Antel J, Ouellet F. Myelin basic protein and human coronavirus 229E cross‐reactive T cells in multiple selerosis. Ann Neurol 1996;39:233–240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Banki K, et al. Oligodendrocyte specific expression and autoantigenicity of transaldolase in multiple‐ sclerosis J Exp Med 1994;180:1649–1663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Froude J, Gibofsky A, Buskirk D, Khanna A, Zabiskie J. Cross reactivity between streptococcus and human tissues: model of molecular mimicry and autoimmunity. Curr Top Microbiol Immunol 1989;145:5–26. [DOI] [PubMed] [Google Scholar]
  • 57. Huber S, Gauntt C, Sakkinen P. Enteroviruses and myocarditis: viral pathogenesis through replication, cytokine induction, and immunopathogenicity Adv Virus Res 1998;51:35–80. [DOI] [PubMed] [Google Scholar]
  • 58. Leslie K, Blay R, Haisch C, Lodge A, Weller A, Huber S. Clinical and experimental aspects of viral myocarditis. Clin Microbiol Rev 1989;2:191–203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59. Lodge P, Herzum M, Olszewski J, Huber S. Coxsackievirus B‐3 myocarditis. Acute and chronic forms of the disease caused by different immunopathogenic mechanisms. Am J Pathol 1987;128:455–463. [PMC free article] [PubMed] [Google Scholar]
  • 60. Andreoletti T, et al. Detection of coxsackie B virus RN.A sequences m whole blood samples from adult patients at the onset of type I diabetes mellitus. J Med Virol 1997;52:121–127. [DOI] [PubMed] [Google Scholar]
  • 61. Hyoty H, et al. A prospective study of the role of coxsackie B and other enterovirus infections in the pathogenesis of TDDM. Childhood Diabetes in Finland (DiMe) Study Group. Diabetes 1995;44:652–657. [DOI] [PubMed] [Google Scholar]
  • 62. Dahlquist G, Frisk G, Ivarsson S, Svanberg I., Forsgren M, Diderholm H. Indications that maternal coxsackie B virus infection during pregnancy is a risk factor for childhood‐onset IDDM. Diabetologia 1995;38:1371–1373. [DOI] [PubMed] [Google Scholar]
  • 63. Hyoty H, Hiltunen M, Lonnrot M. Enterovirus infections and insulin dependent diabetes mellitus‐evidence for causality. Clin Diagn Virol 1998;9:77–84. [DOI] [PubMed] [Google Scholar]
  • 64. Roivainen M, et al. Several different enterovirus serotypes can be associated with prediabetic antoimmune episodes and onset of overt IDDVL Childhood Diabetes in Finland (DiMe) Study Group. J Med Virol 1998;56:74–78. [DOI] [PubMed] [Google Scholar]
  • 65. Hou J, Said C, Franchi D, Dockstader P, Chatterjee N. Antibodies to glutamic acid detarboxylase and P2‐C peptides in sera from coxsackie virus B4‐infected mice and ID15M patients. Diabetes 1994;43:1260–1266. [DOI] [PubMed] [Google Scholar]
  • 66. Jones D, Armstrong N. GAD 65 epitopes in insulin‐dependent diabetes mellitus. Lancet 1994;343:1168–169. [DOI] [PubMed] [Google Scholar]
  • 67. Kaufman D, et al. Spontaneous loss of T cell tolerance to glutamic acid decarboxylase in murine insulin‐dependent diabetes. Nature 1993;366:69–72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68. Tisch R, Yang X, Singer S, Liblau R, Fugger I, McDevitt H. Immune response to glutamic acid decarboxylase correlates with insulitis in non‐obese diabetic mice. Nature 1993;366 72–75. [DOI] [PubMed] [Google Scholar]
  • 69. Tisch R, Yang X, Liblau R, McDevitt H. Administering glutamic acid decarboxylase to NOD mice prevents diabetes. J Autoimmune 1994;7:845–850. [DOI] [PubMed] [Google Scholar]
  • 70. Tian J, Lehmann P, Kaufman D. T cell cross reactivity between coxsackievirus and glutamate decarboxylase is associated with a murine diabetes susceptibility allele. J Exp Med 1994;180:1979–1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71. Chen S, Whiteley P. Freed D, Rodibard J, Peterson L, Wicker L. Responses of NOD congenic mice to a glutamic acid decarboxylase‐derived pep tide. J Autoimmun 1994;7:635–641. [DOI] [PubMed] [Google Scholar]
  • 72. Ghosh S, et al. Polygenic control of autoimmune diabetes in nonobese diabetic mice Nat Genet 1993;4:404–409. [DOI] [PubMed] [Google Scholar]
  • 73. Ohashi P, et al. Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 1991;65:305–317. [DOI] [PubMed] [Google Scholar]
  • 74. Oldstone M, Nerenberg M, Southern P, Price J, Lewicki H. Virus infection triggers insulin‐dependent diabetes mellitus in a transgenic model: role of anti‐self (virus) immune response Cell 1991;65:319–331. [DOI] [PubMed] [Google Scholar]
  • 75. Evans C, Horwitz M, Hobbs M, Oldstone M. Viral infection of transgenic mice expressing a viral protein in oligodendrocytes leads to chronic central nervous system autoimmune disease. J Exp Med 1996;184:2371–2384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76. Von Herrath MG, Dockter J, Oldstone MBA. How virus induces a rapid or slow onset insulin‐dependent diabetes mellitus in a transgenic model. Immunity 1994;1:231–242. [DOI] [PubMed] [Google Scholar]
  • 77. Von Herrath MC, Allison J, Miller JFAP, Oldstone MBA. Focal expression of interleukin‐2 does not break unresponsiveness to “self (viral) antigen expressed in β cells but enhances development of autoimmune disease (diabetes) after initiation of an anti self immune response. J Clin Invest 1995;95:477–485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78. Von Herrath M, Evans C, Horwitz M, Oldstone M. Using transgenic mouse models to dissect the pathogenesis of virus‐induced autoimmune disorders of the islets of Langerhans and the central nervous system Immunol Rev 1996;152:111–143. [DOI] [PubMed] [Google Scholar]
  • 79. Billiau A, Dijkmans R. Interferon‐γ: mechanism of action and therapeutic potential. Biochem Pharmacol 1990;40:1433–1439. [DOI] [PubMed] [Google Scholar]
  • 80. Chao CC, Hu S, Molitor TW, Shaskan EG, and Peterson PK. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 1992;149:2736–2741. [PubMed] [Google Scholar]
  • 81. Chao CC, et al. Cytokine release from microglia: differential inhibition by pentoxifylline and dexamethasone. J Infect Dis 1992;166:847–853. [DOI] [PubMed] [Google Scholar]
  • 82. Huynh H, Dorovini Zis K Effects of interferon‐γ on primary cultures of human brain microvessel endothelial cells. AM J Pathol 1993;142:1265–1278. [PMC free article] [PubMed] [Google Scholar]
  • 83. Male D, Rahman J, Linke A, Zhao W, Hickey W. An interferon inducible molecule on brain endothelium which controls lymphocyte adhesion mediated by integrins Immunology 1995;84:453–460. [PMC free article] [PubMed] [Google Scholar]
  • 84. Horwitz MS, Evans CF, Klier FG, Oldstone MBA. Detailed in vivo analysis of interferon‐γ induced MHC expression in the CNS: astrocytes fail to express MHC dass I and II molecules. Lab Invest 1999;79:235–242. [PubMed] [Google Scholar]
  • 85. Monaco J. Genes in the MHC that may affect antigen processing. Curr Opin Immunol 1992;4:70–73. [DOI] [PubMed] [Google Scholar]
  • 86. Monaco J. A molecular model of MHC class‐I‐restricted antigen processing Immunol Today 1992;13:173–179. [DOI] [PubMed] [Google Scholar]
  • 87. Lampson L, George D. Interferon‐mediated induction of class I MHC products in human neuronal cell lines: analysis of HTA and β‐2m RNA, and HLA‐A and HLA‐B proteins and polymorphic specificities. J Interferon Res 1986;6:257–265. [DOI] [PubMed] [Google Scholar]
  • 88. Cannella B, Raine C. Cytokines up‐regulate la expression in organotypic cultures of central nervous system tissue, J Neuroimmunol 1989;24:239–248. [DOI] [PubMed] [Google Scholar]
  • 89. Horwitz MS, Bradley LM, Harbertson J, Krahl T, Lee J, Sarvetnick N. Coxsackie virus‐induced diabetes; initiation by bystander damage and not molecular mimicry, Nat Med 1998;4:781–785. [DOI] [PubMed] [Google Scholar]
  • 90. Tough D, Borrow P, Sprent J. Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 1996;272:1947–1950. [DOI] [PubMed] [Google Scholar]
  • 91. Tripp RA, Hou S, McMickle A, Houston J, Doherty PC. Recruitment and proliferation of CD8 T cells in respiratory virus infections. J Immunol 1995:154:6013–6021. [PubMed] [Google Scholar]
  • 92. Solin L, Nahill S, Welsh R. Cross‐reactivities in memory cytotoxic T lymphocyte recognition of heterologous viruses. J Exp Med 1994;179:1933–1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93. Nahill S, Welsh R. High frequency of cross‐reactive cytotoxic T lymphocytes elicited during the virus‐induced polyclonal cytotoxic T lymphocyte response. J Exp Med 1993;177:317–327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94. Butz EA, Bevan MJ. Massive expansion of antigen‐specific CD8 T cells during acute virus infection. Immunity 1998;8:167–175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95. Murali Krishna K, et al. Counting antigen specific CD8 T cells a reevaluation of bystander activation during viral infection. Immunity 1998;8:177–187. [DOI] [PubMed] [Google Scholar]
  • 96. Tough DF, Sprent J. Viruses and T cell turnover: evidence for bystander proliferation. Immunol Rev 1996;150:129–142. [DOI] [PubMed] [Google Scholar]
  • 97. Brabb T, Goldrath AW, von Dassow P, Paez A, Liggitt HD, Governman J. Triggers of autoimmune disease in a murine TCR transgenic model for multiple sclerosis. J Immunol 1997;159:497–507. [PubMed] [Google Scholar]
  • 98. Ehl S, Hombach J, Aichele P, Hengarmer H, Zinkernagel R. Bystander activation of cytotoxic T cells: studies on the mechanism and evaluation of in vivo significance in a transgenic mouse model, J Exp Med 1997;185:1241–1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99. Zarozinski CC, Welsh RM. Minimal bystander activation of CD8 T cells during the virus‐induced polyclonal T cell response. J Exp Med 1997;185:1629–1639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100. Zhao Z.‐S, Granucci F, Yeh L, Schaffer PA, Cantor H. Molecular mimicry by herpes simplex virus‐type I: autoimmune disease after viral infection. Science 1998;279:1344–1347. [DOI] [PubMed] [Google Scholar]
  • 101. Bahmanyar S, Srinivasappa J, Casali P, Fujinami R, Oldston M, Kotkins A. Antigenic mimicry between measles virus and human T lymphocytes J Infect Dis 1987;156:526–527. [DOI] [PubMed] [Google Scholar]
  • 102. Srinivasappa J, et al. Molecular mimicry frequency of reactivity of monoclonal antiviral antibodies with normal tissues. J Virol 1986;57 397–401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103. Goverman J, Woods A, Larson L, Weiner L, Hood L, Zaller D. Transgenic mice that express a myelin basic protein‐specific T cell receptor develop spontaneous autoimmunity. Cell 1993;72:551–560. [DOI] [PubMed] [Google Scholar]
  • 104. Hafler D, Fox D, Benjamin M, Blue M, Weiner H. Secondary immune amplification following live poliovirus immunization in humans. Clinical Immunol Immunopathol 1987;44:321–328. [DOI] [PubMed] [Google Scholar]
  • 105. Field A, Tytell A, Lampson G, Hilleman M. Inducers of interferon and hose resistance, II. Multistranded polynucleotide complexes. Biochemistry 1967;58:1004–1010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106. Zhang X, Sun S, Hwang I, Tough D, Sprent J. Potent and selective stimulation of memory‐phenotype CD8+ T cells in vim by IL‐1 5. Immunity 1998;8:591–599. [DOI] [PubMed] [Google Scholar]
  • 107. Von Herrath MG, Dockter J, Oldstone MBA. How virus induces a rapid or slow onset insulin‐dependent diabetes mellitus in a transgenic model. Immunity 1994;1:231–242. [DOI] [PubMed] [Google Scholar]
  • 108. Go N, et al. Interleukin 10, a novel B cell stimulatory factor unresponsiveness of X chromosome‐linked immunodeficiency B cells. J Exp Med 1990;172:625–63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109. Wogensen L, Lee M, Sarvetnick N. Production of interleukin 10 by islet cells accelerates immune‐mediated destruction of beta cells in nonobese diabetic mice. J Exp Med 1994;179:1379–1384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110. Balasa B, Sarvetnick N. The paradoxiral effects of interleukin 10 in the immunoregulation of autoimmune diabetes. J Autoimmun 1996;9:283–286. [DOI] [PubMed] [Google Scholar]
  • 111. Balasa B, Davies J, Lee J, Good A, Yeung B, Sarvetnick N. IL‐10 impacts autoimmune diabetes via a CD8 T cell pathway circumventing the requirement for CD4 T and B lymphocytes. J Immunol 1998;161:4420–4427. [PubMed] [Google Scholar]
  • 112. Herbst H, et al. Frequent expression ot interleukin‐10 by Epstein‐Barr virus‐harboring tumor cells of Hodgkin's disease. Blood 1996;87:2918–2929. [PubMed] [Google Scholar]
  • 113. Graziosi C, et al. Kinetics of cytokine expression during primary human immunodeficiency virus type I infection. Proc Natl. Acad Sci USA 1996;93:4386–4391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114. Konig B, Streckert H, Krusat T, Konig W. Respiratory syncytial virus G‐protein modulates cytokine release from human peripheral blood mononuclear cells. J Leukoc Biol 1996;59:403–406. [DOI] [PubMed] [Google Scholar]
  • 115. Begolka W, Vanderlugt C, Rahbe S, Miller S. Differential expression of inflammatory cytokines parallels progression of central nervous system pathology in two clinically distinct models of multiple sclerosis. J Immunol 1998; 161:4437–4446. [PubMed] [Google Scholar]
  • 116. McElhaney J, Upshaw C, Hooton J, Lechelc K, Meneilly G. Responses to influenza vaccination in different T‐cell subsets; a comparison of healthy young and older adults. Vaccine 1998;16:1742–1747. [DOI] [PubMed] [Google Scholar]
  • 117. Rivera‐Quinones C, McGavern D, Schmelzer J, Hunter S, Low P, Rodriguez M. Absence of neurological deficits following extensive demyelination in a class I‐deficient murine model of multiple sclerosis. Nat Med 1998;2:87–93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118. Seddon B, Mason D. Regulatory T cells in the control of autoimmunity: the essential role of transforming growth factor P and interleukin 4 in the prevention of antoimmune thyroiditis in rats by peripheral CD4+ CD45RC‐ cells and CD4+ CD8 thymocytes. J Exp Med 1999;189:279–288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119. Adler H, Beland J, Kozlow W, Del‐Pan N, Kobzik L, Rimm I. A role for transforming growth factor‐β 1 in the increased pneumonitis in murine allogenic bone marrow transplant recipients with graft‐versus‐host disease after pulmonary herpes simplex virus type I infection. Blood 1998;92:2581–2589. [PubMed] [Google Scholar]
  • 120. Ahmad A, Menezes J. Binding of the Epstein Barr virus to human platelets causes the release of transforming growth factor‐β J Immunol 1997;159:3984–3988. [PubMed] [Google Scholar]
  • 121. Elias J, Wu Y, Zheng T, Panettieri R. Cytokine and virus‐stimulated airway smooth muscle cells produce IL‐11 and other IL‐6‐type cytokines. Am J Physiol 1997;273:1648–655. [DOI] [PubMed] [Google Scholar]
  • 122. Nelson D, et al. Transforming growth factor‐β I in chronic hepatitis C. J viral Hepat 1997;4:29–35. [DOI] [PubMed] [Google Scholar]
  • 123. Sarvetnick N, et al. Loss of pancreatic islet tolerance induced by β‐cell expression of interferon‐β. Nature 1990;346:844–847. [DOI] [PubMed] [Google Scholar]
  • 124. Lee M‐S, von Herrath M, Reiser H, Oldstone MBA, Sarvetnick N. Sensitization to self (virus) antigen by in situ expression of murine interferon‐γ J Clin Invest 1995;95:486–492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125. Gu D, et al. Myasthenia gravis‐like syndrome Induced by expression of interferon γ in the neuromuscular junction. J Exp Med 1995;181:547–557. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Immunological Reviews are provided here courtesy of Wiley

RESOURCES