Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2006 Apr 28;167(1):133–144. doi: 10.1111/j.1600-065X.1999.tb01387.x

Comparative genome organization of the major histocompatibility complex: lessons from the Felidae

Stephen J O'Brien 1,, Naoya Yuhki 1
PMCID: PMC7165862  PMID: 10319256

Abstract

Summary: The mammalian major histocompatibility complex (MHC) has taught both immunologists and evolutionary biologists a great deal about the patterns and processes that have led to immune defenses. Driven principally by human and mouse studies, comparative MHC projects among other mammalian species offer certain advantages in connecting MHC genome characters to natural situations. We have studied the MHC in the domestic cat and in several wild species of Felidae. Our observations affirm class I and class II homology with other mammalian orders, derivative gene duplications during the Felidae radiation, abundant persistent trans‐species allele polymorphism, recombination‐derived amino acid motifs, and inverted ratios of non‐synonymous to silent substitutions in the MHC peptide‐binding regions, consistent with overdominant selection in class I and II genes. MHC diversity as quantified in population studies is a powerful barometer of historic demographic reduction for several endangered species including cheetahs, Asiatic lions, Florida panthers and tigers. In two cases (Florida panther and cheetah), reduced MHC variation may be contributing to uniform population sensitivity to emerging infectious pathogens. The Felidae species, nearly all endangered and monitored for conservation concerns, have allowed a glimpse of species adaptation, mediated by MHC divergence, using comparative inferences drawn from human and mouse models.

References

  • 1. Anderson RM, May RM, eds. Infectious diseases of humans: dynamics and control. New York ; Oxford University Press; 1992. [Google Scholar]
  • 2. McNeill, WH. Plagues and people. Cambridge , UK : Blackwell; 1992. [Google Scholar]
  • 3. Appel MJ, ed. Virus infections of carnivores Vol 1 Virus infections of vertebrates. Oxford : Elsevier Science Publisher BV; 1987. [Google Scholar]
  • 4. Ewald PW. ed. Evolution of infectious disease. Oxford : Oxford University Press; 1994. [Google Scholar]
  • 5. Haldane, JBS. Disease and evolution. Ric Sci Suppl 1949;12:2–11. [Google Scholar]
  • 6. Klein J, ed. Natural history of die major histocompatibility complex. New York : John Wiley & Sons, Inc; 1986. [Google Scholar]
  • 7. Zinkeniagel, R. Immunology taught by viruses. Science 1996;271:173–178. [DOI] [PubMed] [Google Scholar]
  • 8. Townsend, A , Bodmer, H. Antigen recognition by class I‐restricted T lymphocytes. Annu Rev Immunol 1989;7:601–624. [DOI] [PubMed] [Google Scholar]
  • 9. Kimura, M. The neutral theory of molecular evolution. Cambridge : Cambridge University Press; 1983. [Google Scholar]
  • 10. Parham, P , Ohta, T. Population biology of antigen presentation by MHC class I molecules. Science 1996;272:67–74. [DOI] [PubMed] [Google Scholar]
  • 11. Lawlor, DA , Ward, FF , Ennis, PD , Jackson, AP. Parham, P. HLA‐A, ‐B. polymorphisms predate the divergence of humans and chimpanzees. Nature 1988;335:268–271. [DOI] [PubMed] [Google Scholar]
  • 12. Ohta, T. On the evolution of multigene families. Theor Popul Biol 1983;23:216–240. [DOI] [PubMed] [Google Scholar]
  • 13. Lawlor, DA , Zemmour, J , Ennis, PD , Parham, P. Evolution of class I MHC genes and proteins: from natural selection to thymic selection. Annu Rev Immunol 1990;8:23–63. [DOI] [PubMed] [Google Scholar]
  • 14. Fan, W , et al. Shared class II polymorphisms between human and chimpanzees. Hum Immunol 1989;26:107–121. [DOI] [PubMed] [Google Scholar]
  • 15. Gyllensten, UB , Erlich, HA. Ancient roots for polymorphism at the HLA‐DQα locus in primates. Proc Nad Acad Sci USA 1989;86:9986–9990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Gyllensten, U , Sundvall, M , Ezcurra, I , Erlich, HA. Genetic diversity al class II DRB loci of the primate MHC. J Immunol 1991;146:4368–4376. [PubMed] [Google Scholar]
  • 17. Mayer, WE , O'hUigin, C , Zaleska‐Rutcznska, Z , Klein, J. Trans‐species origin of Mhc‐DRB polymorphism in the chimpanzee. Immunogenetics 1992;37:12–23. [DOI] [PubMed] [Google Scholar]
  • 18. Bjorkman, PJ , Saper, MA , Samraoui, B. Bennet, WAS , Strominger, JL , Wiley, DC. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 1987;329:512–518. [DOI] [PubMed] [Google Scholar]
  • 19. Bjorkman, PJ , Saper, MA , Samraoui, B , Bennet, WAS , Strominger, JL , Wiley, DC. Structure of the human class I histocompatibility antigen, HLA‐A2. Nature 1987;329:506–512. [DOI] [PubMed] [Google Scholar]
  • 20. Brown, JH , Jardetzky, T , Saper, MA , Samraoui, B , Bjorkman, PJ , Wiley, DC. Three‐dimensional structure of the human class II histocompatibility antigen HLA‐DR1. Nature 1993;364:33–39. [DOI] [PubMed] [Google Scholar]
  • 21. Brown, JH , Jardetzky, T , Saper, MA , Samraoui, B , Bjorkman, PJ , Wiley, DC. A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules. Nature 1988;332:845–850. [DOI] [PubMed] [Google Scholar]
  • 22. Zinkernagel, RM , Doherty, PC. Immunological surveillance against altered self components by sensitized T lymphocytes in lymphocytic choriomeningitis. Nature 1974;251:547–548. [DOI] [PubMed] [Google Scholar]
  • 23. Doherty, PC , Zinkernagel, RM. Enhanced immunologic surveillance in mice heterozygous at the H‐2 gene complex. Nature 1975;256:50–52. [DOI] [PubMed] [Google Scholar]
  • 24. Hughes, A. , Yeager, M. Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet 1998;32:415–435. [DOI] [PubMed] [Google Scholar]
  • 25. Klein, J , Satta, Y , O'hUigin, C. The molecular descent of the major histocompatibility complex. Annu Rev Immunol 1993;11:269–295. [DOI] [PubMed] [Google Scholar]
  • 26. Hughes, AL , Nei, M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals over dominant selection. Nature 1988;335:167–170. [DOI] [PubMed] [Google Scholar]
  • 27. Hughes, AL , Nei, M. Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc Natl Acad Sci USA 1989;86:958–962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Hedrick, PW , Whittam, TS , Parham, P. Heterozygosity at individual amino acid sites: extremely high levels for HLA‐A and ‐B genes, Proc Natl Acad Sci USA 1991;88:5897–5901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Takahata, N. , Nei, M. Allelic genealogy under overdominant and frequency dependent selection and polymorphism of major histocompatibility complex loci. Genetics 1990;124:967–978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Takahata, N. , Satta, Y. , Klein, J. Polymorphism and balancing selection at major histocompatibility complex loci. Genetics 1992;130:925–938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Takahata, N. A simple genealogical structure of strongly balanced allelic lines and trans‐species evolution of polymorphism. Proc Nacl Acad Sci USA 1990;87:2419–2423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Hedrick, PW. Thompson, G. Evidence for balancing selections at HLA. Genetics 1983;104:449–456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Crow, JE. Overdominance, a half‐century later. Evol Biol 1998;30:1–13. [Google Scholar]
  • 34. Rammensee, H‐G , Friede, T , Stevanovic, S. MHC ligands and peptide motifs: first listing. Immuuogenetics 1995;41:178–228. [DOI] [PubMed] [Google Scholar]
  • 35. Clarke, B , Kirby, DR. Maintenance of histocompatibility complex polymorphisms. Nature 1966;211:999–1000. [DOI] [PubMed] [Google Scholar]
  • 36. Potts, WK. Manning, CJ , Wakeland, EK. Mating patterns in seminatural populations of mice influenced by MHC genotype. Nature 1991;352:619–621. [DOI] [PubMed] [Google Scholar]
  • 37. Fan, W , Liu, Y. Parimoo, S , Weissman, S. Olfactory receptor‐like genes are located in the human major hiistocompatibility complex. Genomics 1995;27:119–123. [DOI] [PubMed] [Google Scholar]
  • 38. Potts, W , Wakeland, E. Evolution of MHC genetic diversity: a tale of incest. Pestilence and sexual preference. Trends Genet 1993;9:408–412. [DOI] [PubMed] [Google Scholar]
  • 39. Briles, W. Stone, H , Cole, R. Marek's disease: effects of B histocompatibility alloalleles in resistant and susceptible chicken lines. Science 1977;195:193–195. [DOI] [PubMed] [Google Scholar]
  • 40. Pazderka, F , Longnecker, B. Law, G , Stone, H , Ruth, R. Histocompatibility of chicken populations selected for resistance to Marek's disease. Immunogenetics 1975;2:93–100. [Google Scholar]
  • 41. Mirsky, ML , Olmstead, C , Da, Y , Lewin, HA. Reduced bovine leukemia virus proviral load in genetically resistant cattle. Anim Genet 1998;29:245–252. [DOI] [PubMed] [Google Scholar]
  • 42. Hill, AVS , et al. Common West African HLA antigens are associated with protection from severe malaria. Nature 1991;352:595–600. [DOI] [PubMed] [Google Scholar]
  • 43. Thurz, MR , Thomas, HC , Greenwood, BM , Hill, AVS. Heterozygote advantage for HLA class‐II type in hepatitis B virus infection. Nat Genet 1997;17:11–12. [DOI] [PubMed] [Google Scholar]
  • 44. O'Brien, SJ. Molecular genetics in the domestic cat and its relatives. Trends Genet 1996;2:137–142. [Google Scholar]
  • 45. O'Brien, SJ , Wienberg, J , Lyons, LA. Comparative genomics: lessons from cats. Trends Genet 1997;13:393–399. [DOI] [PubMed] [Google Scholar]
  • 46. Pedersen, NC. Coronavirus disease (coronavirus enteritis, feline infectious peritonitis) In: Holzworth J, ed. Diseases of the cat. Philadelphia : WB Saunders; 1987. p. 193–214. [Google Scholar]
  • 47. Hardy WD, Essex M, McClelland AJ. eds. Feline leukemia virus. New York : Elsevier/North Holland: 1980. [Google Scholar]
  • 48. Pedersen, NC. The feline imunodeficiency virus In: Levy JA, ed. Viruses: the retroviridae. Vol 2 New York : Plenum Press: 1993. p. 181–228. [Google Scholar]
  • 49. Lyons, LA , Laughlin, TE , Copeland, NG. Jenkins, NA , Womack, JE , O'Brien, SJ. Comparative anchored tagged sequences (CATS) for integrative mapping of mammal genomes. Nat Genet 1997;15:47–56. [DOI] [PubMed] [Google Scholar]
  • 50. O'Brien, SJ , Evermann, JF. Interactive influence of infectious disease and genetic diversity in natural populations. Trends Ecol Evol 1988;3:254–259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. Salles, LO. Felid phylogenetics: extant taxa and skull morphology (Felidae, Acluroidae). American Museum Novitates 1992;3047:1–67. [Google Scholar]
  • 52. Pecon Slattery, J , O'Brien, SJ. Patterns of Y and X chromosome DNA sequence divergence during the Felidae radiation. Genetics 1998;148:1245–1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Johnson, W. O'Brien, SJ. Phylogenetic reconstruction of the Felidae using 16S rRNA and NADH‐5 mitochondrial genes. J Mol Evol 1997;44 (Suppl l)S98–S116. [DOI] [PubMed] [Google Scholar]
  • 54. Schaller, GB. The Serengeti lion – a study of predator‐prey relations. Chicago : University of Chicago Press; 1972. [Google Scholar]
  • 55. Caro, TM. Cheetahs of the Serengeti Plains. Group living in a social species. Chicago : University of Chicago Press; 1994. [Google Scholar]
  • 56. O'Brien, SJ. The family line: the human‐cat connection. Natl Geogr Mag 1997;191:77–85. [Google Scholar]
  • 57. Heeney, JL , et al. Prevalence and implications of feline coronavirus infections of captive and free‐ranging cheetahs (Acinonyx jubutus). J Virol 1990;64:1964–1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Carpenter, MA , O'Brien, SJ. Coadaptation and immunodeficiency virus; lessons from the Felidae. Curr Opin Genet Dev 1995;5:739–745. [DOI] [PubMed] [Google Scholar]
  • 59. Roelke‐Parker, ME , et al. A canine distemper virus epidemic in Serengeti lions (Ponthera leo). Nature 1996;379:441–445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Savage, DE , Russell, DE. Mammalian paleofaunas of the world, London ; Addison‐Wesley Publ Co; 1993. [Google Scholar]
  • 61. Kumar, S , Hedges, SB. A molecular timescale for vertebrate evolution. Nature 1998;192:917–920. [DOI] [PubMed] [Google Scholar]
  • 62. Flynn, JE , Neff, NA , Tedford, RH. Phylogeny of the Carnivora In: Benton MJ, ed. The phylogeny and classification of the tetrapod. Vol 2 Oxford ; Clarendon Press: 1998. p. 73–116. [Google Scholar]
  • 63. Wayne, RK , Benveniste, RE , Janczewski, DN , O'Brien, SJ. Molecular and biochemical evolution of the Carnivora In: Gittleman JL, ed. Carnivore behavior, ecology and evolution. New York : Cornell University; 1989. p. 465–494. [Google Scholar]
  • 64. Pollack, MS , Mastorta, F , Chin‐Louie, J , Monney, S , Hayes, A. Preliminary studies of the feline histocompatibility system. Immunogenetics 1982;16:339–347. [DOI] [PubMed] [Google Scholar]
  • 65. Gasper, PW , et al. Correction of feline arylsulphatase B deficiency (mucopolysaccharidosis VI) by bone marrow transplantation. Nature 1984;32:467–469. [DOI] [PubMed] [Google Scholar]
  • 66. Winkler, C , Schultz, A , Cevario, S , O'Brien, SJ. Genetic characterization of FLA, the cat major histocompatibility complex. Proc Nacl Acad Sci USA 1989;86:943–947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67. Yuhki, N , O'Brien, SJ. Molecular characterization and genetic mapping of class I and class II MHC genes of the domestic cat. Immunogenetics 1988;27:414–425. [DOI] [PubMed] [Google Scholar]
  • 68. Trowsdale, J. Molecular genetics of HLA class I and class II regions In: Browning MJ. McMichael AJ, eds. HLA and MHC: genes, molecules and function. Oxford : IOS Scientific Publishers Ltd: 1996. p. 23–38. [Google Scholar]
  • 69. Yuhki, N , O'Brien, SJ. DNA recombination and natural selection pressure sustain genetic sequence diversity of the feline MHC class I genes. J Exp Med 1990;172:621–630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Yuhki, N , O'Brien, SJ. Exchanges of short polymorphic DNA segments predating speciation in feline major histocompatibility complex class I genes. J Mol Evol 1994;39:22–33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71. Rogers, JH. Mouse histocompatibility‐related genes are not conserved in other mammals. EMBO J 1985;4:749–753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72. Hughes, AL , Net, M. Evolution of the major histocompatibility complex: independent origin of nonclassical class I genes in different groups of mammals. Mol Biol Evol 1989;6:559–579. [DOI] [PubMed] [Google Scholar]
  • 73. Lawrance, S , Quaranta, V. Molecular bases of MHC diversity In: Srivastava R, Rans BP, Tyle P, eds. Immunogenetics of the major histocompatibility complex. New York : VCH Publishers: 1991. p. 39–64. [Google Scholar]
  • 74. Mathis, DJ , Benoist, C , Williams, VE. II. , Kanter, M. McDevitt, HO. Several mechanisms can account for defective Eα gene expression in different mouse haplotypes. Proc Natl Acad Sci USA 1983;80:273–277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75. Schopfer, R , Figueroa, E , Nisetic, D , Nevo, E , Klein, J. Evolutionary diversification of class II P loci in the Mhc of die mole rat Spolax chrenbergi. Mol Biol Evol 1987;4:287–299. [DOI] [PubMed] [Google Scholar]
  • 76. Yuhki, N , O'Brien, SJ. Nature and origin of polymorphism in feline MHC class II DRA and DRB genes. J Immunol 1997;158:2822–2833. [PubMed] [Google Scholar]
  • 77. Stanley, SM. Extinction. New York ; WH Freeman and Company: 1987. [Google Scholar]
  • 78. Hughes, A. MHC polymorphism and the design of captive breeding programs, Conservation Biology- 1991;5:249–251. [Google Scholar]
  • 79. Miller, F , Hedrick, P. MHC polymorphism and the design of captive breeding programs: simple solutions are not the answer. Conservation Biology 1991;5:556–558. [Google Scholar]
  • 80. Vrijenhoek, R , Leberg, P. Let's not throw the baby out with the bathwater: a comment on management for MHC diversity in captive populations. Conservation Biology 1991;5:252–254. [Google Scholar]
  • 81. O'Brien, SJ. A role for molecular genetics in biological conservation. Proc Nacl Acad Sci USA 1994;91:5748–5755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82. O'Brien, SJ. Genetic and phylogenetic analyses of endangered species. Annu Rev Genet 1994;28:467–489. [DOI] [PubMed] [Google Scholar]
  • 83. O'Brien, SJ , et al. Genetic basis for species vulnerability in the cheetah. Science 1985;227:1428–1434. [DOI] [PubMed] [Google Scholar]
  • 84. Yuhki, N , O'Brien, SJ. DNA variation of the mammalian major histocompatibility complex reflects genomic diversity and population history, Proc Nacl Acad Sci USA 1990;7:836–840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85. Heeney, JL , et al. Prevalence and implications of feline coronavirus infections of captive and free‐ranging cheetahs (Acinonyx jubatus). J Virol 1990;64:1964–1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86. Wildt, DE , et al. Reproductive and genetic consequences of founding isolated lion populations. Nature 1987;329:328–331. [Google Scholar]
  • 87. Gilbert, DA , Packer, C , Pusey, AE , Stephens, JC , O'Brien, SJ. Analytical DNA fingerprinting in lions; parentage, genetic diversity, and kinship. J Hered 1991;82:378–386. [DOI] [PubMed] [Google Scholar]
  • 88. O'Brien, SJ , et al. Evidence for African origins of founders of the Asiatic lion species survival plan. Zoo Biol 1987;6:99–116. [Google Scholar]
  • 89. Roelke, ME , Martenson, JS , O'Brien, SJ. The consequences of demographic reduction and genetic depletion in the endangered Florida panther. Curr Biol 1993;3:340–350. [DOI] [PubMed] [Google Scholar]
  • 90. Frankham, R. Conservation genetics. Annu Rev Genet 1995;29:305–327. [DOI] [PubMed] [Google Scholar]
  • 91. Saccheri, L , Kuussaari, M , Kankare, M , Vikman, P , Fonellus, W , Hanski, I. Inbreeding and extinction in a butterfly metapopulation. Nature 1998;392:491–494. [Google Scholar]
  • 92. Yuhki, N , Winkler, C , O'Brien, SJ. MHC genes of the domestic cat In: Srivastava R, Ram BP, Tyle P, eds. Immunogenetics of the Major Histocompatibility Complex. New York ; VCH Publishers; 1991. p. 348–367. [Google Scholar]
  • 93. Wentzel, J , et al. Molecular genetic ascertainment of subspecies affiliation in tigers In: Seidensticker J, Christie S, Jackson P. eds. Riding the tiger; tiger conservation in human dominated landscapes. Cambridge : Cambridge University Press; (In press). [Google Scholar]
  • 94. Bodmer, JG , et al. Nomenclature for factors of the HLA system. Tissue Antigens 1994;44:1–18. [DOI] [PubMed] [Google Scholar]
  • 95. O'hUigin, C , Bontrop, R , Klein, J. Nonhuman primate Mhc‐DRB sequences a compilation. Immunogenetics 1993;38:165–183. [DOI] [PubMed] [Google Scholar]
  • 96. Shwaiger, FW. et al. The paradox of MHC‐DRB exon/intron evolution; α‐helix and β‐sheet encoding region diverge while hypervariable intronic simple repeats coevolve with β‐sheet codons. J Mol Evol 1993;37:260–272. [DOI] [PubMed] [Google Scholar]
  • 97. Swarbrick, PA , Schwaiger, FW , Epple, JT , Buchan, GS , Griffin, JFT , Crawford, AM. Cloning and sequencing of expressed DRB genes of the red deer (Cervus eluphus) MHC. Immunogenetics 1995;42:1–9. [DOI] [PubMed] [Google Scholar]
  • 98. Mikko, S , Andersson, L. Low major histocompatibility complex class II diversity in European and North American moose. Proc Natl Acad Sci USA 1995;92:4259–4263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99. Mikko, S , Andersson, L. Extensive MHC class II DRB3 diversity in African and European cattle. Immunogenetics 1995;42:408–413. [DOI] [PubMed] [Google Scholar]

Articles from Immunological Reviews are provided here courtesy of Wiley

RESOURCES