Abstract
CD56+T cells and CD56+natural killer (NK) cells are abundant in the human liver. The aim of this study was the further characterization of these cells in the liver with or without hepatitis C virus (HCV) infection. Liver mononuclear cells (MNC) were isolated from liver specimens obtained from the patients during abdominal surgery. In addition to a flow cytometric analysis, liver MNC and PBMC were cultured with the immobilized anti‐CD3 Ab, IL‐2, or a combination of IL‐2 and IL‐12 and their IFN‐γ production and the antitumor cytotoxicity were assessed. The liver MNC of HCV (−) patients contained 20% CD56+T cells whereas the same proportions decreased to 11% in chronic hepatitis livers and to 5% in cirrhotic livers. The proportion of NK cells also decreased in the cirrhotic livers. On the other hand, the populations of these cells in PBMC did not significantly differ among patient groups. The IFN‐γ production and the cytotoxicity against K562 cells, Raji cells, and a hepatocellular carcinoma, HuH‐7 cells, greatly decreased in the cirrhotic liver MNC. In contrast, the cytotoxicity in PBMC did not significantly differ among the patient groups and was lower than that in the liver MNC of HCV (−) patients. CD56+T cells and NK cells but not regular T cells purified from liver MNC cultured with cytokines showed potent cytotoxicities against HuH‐7 cells. These results suggest that a decreased number of CD56+T cells and NK cells in cirrhotic livers may be related to their susceptibility to hepatocellular carcinoma.
REFERENCES
- 1. Davis GL, Hepatitis C. In: Schiff ER, Sorrell MF, Maddrey WC. eds. Schiff's Diseases of the Liver8th ed Philadelphia: Lippincott‐Raven Publishers. 1999; 793–836. [Google Scholar]
- 2. Hata K, Zhang XR, Iwatsuki S, Van Thiel DH, Herberman RB, Whiteside TL. Isolation, phenotyping, and functional analysis of lymphocytes from human liver. Clin Immunol & Immunopath 1990; 56:401–419. [DOI] [PubMed] [Google Scholar]
- 3. Botarelli P, Brunetto MR, Minutello MA, Calvo P, Unutmaz D, Weiner AJ, Choo QL, et al. T‐lymphocyte response to hepatitis C virus in different clinical courses of infection. Gastroenterology 1993; 104:580–587.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m8425701&dopt=Citation [DOI] [PubMed] [Google Scholar]
- 4. Minutello MA, Pileri P, Unutmaz D, Censini S, Kuo G, Houghton M, Brunetto MR, et al. Compartmentalization of T lymphocytes to the site of disease: intrahepatic CD4+ T cells specific for the protein NS4 of hepatitis C virus in patients with chronic hepatitis C. J Exp Med 1993; 178:17–25.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m8100267&dopt=Citation [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Koziel MJ, Dudley D, Afdhal N, Choo QL, Houghton M, Ralston R, Walker BD. Hepatitis C virus (HCV)‐specific cytotoxic T lymphocytes recognize epitopes in the core and envelope proteins of HCV. J Virol 1993; 67:7522–7532.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m7693974&dopt=Citation [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. Kita H, Moriyama T, Kaneko T, Harase I, Nomura M, Miura H, Nakamura I, et al. HLA B44‐restricted cytotoxic T lymphocytes recognizing an epitope on hepatitis C virus nucleocapsid protein. Hepatology 1993; 18:1039–1044.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m7693568&dopt=Citation [PubMed] [Google Scholar]
- 7. Cacciarelli TV, Martinez OM, Gish RG, Villanueva JC, Krams SM. Immunoregulatory cytokines in chronic hepatitis C virus infection: pre‐ and posttreatment with interferon alfa. Hepatology 1996; 24:6–9.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m8707283&dopt=Citation [DOI] [PubMed] [Google Scholar]
- 8. Napoli J, Bishop GA, McGuinness PH, Painter DM, McCaughan GW. Progressive liver injury in chronic hepatitis C infection correlates with increased intrahepatic expression of Th1‐associated cytokines. Hepatology 1996; 24:759–765.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m8855173&dopt=Citation [DOI] [PubMed] [Google Scholar]
- 9. Ohteki T, MacDonald R. Major histocompatibility complex class I related molecules control the development of CD4+ and CD4−8− subsets of natural killer1.1+ T cell receptor‐αβ+ cells in the liver of mice. J Exp Med 1994; 180:699–704.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m8046344&dopt=Citation [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. Hashimoto W, Takeda K, Anzai R, Ogasawara K, Sakihara H, Sugiura K, Seki S, et al. Cytotoxic NK1.1 Ag+ αβ T cells with intermediate TCR induced in the liver of mice by IL‐12. J Immunol 1995; 154:4333–4340.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m7722291&dopt=Citation [PubMed] [Google Scholar]
- 11. Takeda K, Seki S, Ogasawara K, Anzai R, Hashimoto W, Takahashi M, Sato T, et al. Liver NK1.1+ CD4+ αβ T cells as a major effector in inhibition of tumor metastasis. J Immunol 1996; 156:3336–3373. [PubMed] [Google Scholar]
- 12. Tsukahara A, Seki S, Iiai T, Moroda T, Watanabe H, Suzuki M, Tada T, et al. Mouse liver T cells: their change with aging and in comparison with peripheral T cells. Hepatology 1997; 26:301–309.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m9252138&dopt=Citation [DOI] [PubMed] [Google Scholar]
- 13. Satoh M, Seki S, Hashimoto W, Ogasawara K, Kobayashi T, Matsuno M, Kumagai K, et al. Cytotoxic γδ or αβ T cells with an NK cell marker, CD56, induced from human peripheral blood lymphocytes by the combination of IL‐12 and IL‐2. J Immunol 1996; 157:3886–3892.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m8892619&dopt=Citation [PubMed] [Google Scholar]
- 14. Seki S, Hashimoto W, Ogasawara K, Sato M, Watanabe H, Habu Y, Hiraide H, et al. Antimetastatic effect of NK1+T cells on experimental hematogenous tumor metastasis in the liver and lung. Immunology 1997; 92:561–566.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m9497499&dopt=Citation [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Cui J, Shin T, Kawano T, Sato H, Kondo E, Toura I, Kaneko Y, et al. Requirement for Vα14 NK1+T cells in IL‐12‐mediated rejection of tumors. Science 1997; 278:1623–1626.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m9374462&dopt=Citation [DOI] [PubMed] [Google Scholar]
- 16. Seki S, Habu Y, Kawamura T, Takeda K, Dobashi H, Ohkawa T, Hiraide H. The liver as a crucial organ in the first line of host defense: the roles of Kupffer cells, NK cells and NK1.1 Ag+T cells in T helper 1 immune responses. Immunol Rev 2000; 174:35–46.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m10807505&dopt=Citation [DOI] [PubMed] [Google Scholar]
- 17. Ogasawara K, Takeda K, Hashimoto W, Okuyama R, Yanai N, Obinata M, Kumagai K, et al. Involvement of the NK1.1+T cells and their IFN‐γ production in the generalized Shwartzman reaction. J Immunol 1998; 160:3522–3527.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m9531314&dopt=Citation [PubMed] [Google Scholar]
- 18. Nakabayashi H, Taketa K, Yamane T, Oda M, Sato J. Hormonal control of α‐fetoprotein secretion in human hepatoma cell lines proliferating in chemically defined medium. Cancer Res 1985; 45:6379–6383.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m2415243&dopt=Citation [PubMed] [Google Scholar]
- 19. Lanier LL, Chang C, Phillips JH. Human NKR‐P1A. A disulfide‐linked homodimer of the C‐type lectin superfamily expressed by a subset of NK and T lymphocytes. J Immunol 1994; 153:2417–2428.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m8077657&dopt=Citation [PubMed] [Google Scholar]
- 20. Carson WE, Fehniger TA, Halder S, Eckhert K, Lindeman MJ, Lai CF, Croce CM, et al. A potential role for interleukin‐15 in the regulation of human natural killer cell survival. J Clin Invest 1997; 99:937–943.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m9062351&dopt=Citation [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Prince AM, Brotman B, Grady GF, Kuhns WJ, Hazzi C, Levine RW, Millian SJ. Long‐incubation post‐transfusion hepatitis without serological evidence of exposure to hepatitis‐B virus. Lancet 1974; 2:341–346. [DOI] [PubMed] [Google Scholar]
- 22. Feinstone SM, Kapikian AZ, Purcell RH, Alter HJ, Holland PV. Transfusion‐associated hepatitis not due to viral hepatitis type A or B. N Engl J Med 1975; 292:767–770.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m163436&dopt=Citation [DOI] [PubMed] [Google Scholar]
- 23. Bradley DW, McCaustland KA, Cook EH, Schable CA, Ebert JW, Maynard JE. Posttransfusion non‐A, non‐B hepatitis in chimpanzees. Physicochemical evidence that the tubule‐forming agent is a small, enveloped virus. Gastroenterology 1985; 88:773–779.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m2981754&dopt=Citation [PubMed] [Google Scholar]
- 24. Arima T, Nagashima H, Murakami S, Kaji C, Fujita J, Shimomura H, Tsuji T. Cloning of a cDNA associated with acute and chronic hepatitis C infection generated from patients serum RNA. Gastroenterologia Japonica 1989; 24:540–544.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m2509278&dopt=Citation [DOI] [PubMed] [Google Scholar]
- 25. Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M. Isolation of a cDNA clone derived from a blood‐borne non‐A, non‐B viral hepatitis genome. Science 1989; 244:359–362.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m2523562&dopt=Citation [DOI] [PubMed] [Google Scholar]
- 26. Arase N, Arase H, Park SY, Ohno H, Ra C, Saito T. Association with FcR gamma is essential for activation signal through NKR‐P1 (CD161) in natural killer (NK) cells and NK1.1+ T cells. J Exp Med 1997; 186:1957–1963.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m9396764&dopt=Citation [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. Kawachi Y, Arai K, Moroda T, Kawamura T, Umezu H, Naito M, Ohtsuka K, et al. Supportive cellular elements for hepatic T cell differentiation: T cells expressing intermediate levels of the T cell receptor are cytotoxic against syngeneic hepatoma, and are lost after hepatocyte damage. Eur J Immunol 1995; 25:3452–3459.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m8566037&dopt=Citation [DOI] [PubMed] [Google Scholar]
- 28. Miyaji C, Watanabe H, Osman Y, Kuwano Y, Abo T. A comparison of proliferative response to IL‐7 and expression of IL‐7 receptors in intermediate TCR cells of the liver, spleen, and thymus. Cell Immunol 1996; 169:159–165.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m8620543&dopt=Citation [DOI] [PubMed] [Google Scholar]
- 29. Watanabe H, Miyaji C, Seki S, Abo T. c‐kit+ stem cells and thymocyte precursors in the livers of adult mice. J Exp Med 1996; 184:687–693.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m8760822&dopt=Citation [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Taniguchi H, Toyoshima T, Fukao K, Nakauchi H. Presence of hematopoietic stem cells in the adult liver. Nature Med 1996; 2:198–203.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m8574965&dopt=Citation [DOI] [PubMed] [Google Scholar]
- 31. Collins C, Norris S, McEntee S, Traynor O, Bruno L, von Boehmer H, Hegarty J, et al. RAG1, RAG2 and pre‐T cell receptor alpha chain expression by adult human hepatic T cells: evidence for extrathymic T cell maturation. Eur J Immunol 1996; 26:3114–3118.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m8977312&dopt=Citation [DOI] [PubMed] [Google Scholar]
- 32. Crosbie OM, Reynolds M, McEntee G, Traynor O, Hegarty JE, O'Farrelly C. In vitro evidence for the presence of hematopoietic stem cells in the adult human liver. Hepatology 1999; 29:1193–1198.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m10094964&dopt=Citation [DOI] [PubMed] [Google Scholar]
- 33. Yang Y, Wilson JM. Clearance of adenovirus‐infected hepatocytes by MHC Class I‐restricted CD4+ CTLs in vivo . J Immunol 1995; 155:2564–2570.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m7650386&dopt=Citation [PubMed] [Google Scholar]
- 34. Schijns VECJ, Wierda CMH, Van Hoeij M, Horzinek MC. Exacerbated viral hepatitis in IFN‐γ receptor‐deficient mice is not suppressed by IL‐12. J Immunol 1996; 157:815–821.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m8752933&dopt=Citation [PubMed] [Google Scholar]
- 35. Makino Y, Koseki H, Adachi Y, Akasaka T, Tsuchida K, Taniguchi M. Extrathymic differentiation of a T cell bearing invariant V alpha 14J alpha 281 TCR. Intern Rev Immunol 1994; 11:31–46. [DOI] [PubMed] [Google Scholar]
- 36. Lantz O, Bendelac A. An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I‐specific CD4+ and CD4−8− T cells in mice and humans. J Exp Med 1994; 180:1097–1106.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m7520467&dopt=Citation [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37. Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, et al. CD1d‐restricted and TCR‐mediated activation of v‐alpha14 NKT cells by glycosylceramides. Science 1997; 278:1626–1629.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m9374463&dopt=Citation [DOI] [PubMed] [Google Scholar]
- 38. Brossay L, Chioda M, Burdin N, Koezuka Y, Casorati G, Dellabona P, Kronenberg M. CD1d‐mediated recognition of an alpha‐galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J Exp Med 1998; 188:1521–1528.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m9782129&dopt=Citation [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39. Spada FM, Koezuka Y, Porcelli SA. CD1d‐restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J Exp Med 1998; 188:1529–1534.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m9782130&dopt=Citation [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40. Doherty DG, O'Farrelly C. Innate and adaptive lymphoid cells in the human liver. Immunol Rev 2000; 174:5–20.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m10807503&dopt=Citation [DOI] [PubMed] [Google Scholar]
- 41. Takahashi M, Ogasawara K, Takeda K, Hashimoto W, Sato T, Kumagai K, Seki S. LPS induces NK1.1+ αβ T cells with potent cytotoxicity in the liver of mice via production of IL‐12 from Kupffer cells. J Immunol 1996; 156:2436–2442.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m8786302&dopt=Citation [PubMed] [Google Scholar]
- 42. Dobashi H, Seki S, Habu Y, Ohkawa T, Takeshita S, Hiraide H, Sekine I. Activation of mouse liver NK cells and NK1.1+T cells by bacterial superantigen primed Kupffer cells. Hepatology 1999; 30:430–436.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m10421651&dopt=Citation [DOI] [PubMed] [Google Scholar]
- 43. Trinchieri G. Interleukin 12: a proinflammatory cytokine with immunomodulatory functions that bridge innate resistance and antigen‐specific adaptive immunity. Annu Rev Immunol 1995; 13:251–276.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m7612223&dopt=Citation [DOI] [PubMed] [Google Scholar]
- 44. Piontek GE, Taniguchi K, Ljunggren HG, Gronberg A, Kiessling R, Klein G, Karre K. YAC‐1 MHC class I variants reveal an association between decreased NK sensitivity and increased H‐2 expression after interferon treatment or in vivo passage. J Immunol 1985; 135:4281–4288.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m3905967&dopt=Citation [PubMed] [Google Scholar]
- 45. Storkus WJ, Howell DN, Salter RD, Dawson JR, Cresswell P. NK susceptibility varies inversely with target cell class I HLA antigen expression. J Immunol 1987; 138:1657–1659.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m3819393&dopt=Citation [PubMed] [Google Scholar]
- 46. Sugawara S, Abo T, Itoh H, Kumagai K. Analysis of mechanisms by which NK cells acquire increased cytotoxicity against class I MHC‐eliminated targets. Cell Immunol 1989; 119:304–316.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=m2702694&dopt=Citation [DOI] [PubMed] [Google Scholar]
