Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2006 Feb 28;250(1):95–104. doi: 10.1111/j.1469-7998.2000.tb00580.x

Mouse (Mus musculus) stocks derived from tropical islands: new models for genetic analysis of life‐history traits

Richard A Miller 1, Robert Dysko 1, Clarence Chrisp 1, Renee Seguin 1, Luann Linsalata 1, Gretchen Buehner 1, James M Harper 2, Steven Austad 2
PMCID: PMC7166381  PMID: 32336890

Abstract

Founder effects, together with access to unoccupied ecological niches, may allow rodent populations on isolated islands to evolve constellations of life‐history traits that distinguish them from their mainland relatives, for example in body size, litter size, and longevity. In particular, low intrinsic mortality risks on islands with reduced predator numbers and not subject to harsh winter climates may in principle support the development of stocks with extended longevity. Conversely, the conditions under which laboratory rodents are typically bred are thought to select for genotypes that produce large, rapidly maturing races with high early reproductive rates but diminished longevity. To test these ideas, and to generate new mouse stocks suitable for genetic and molecular analysis of the processes that time life‐history events, we have developed specific pathogen‐free stocks from mice trapped from three distinct populations: the U.S. mainland (Idaho) and the tropical Pacific islands Majuro and Pohnpei. Mice from all three locations were found to be shorter and lighter, to have smaller litters, and to have higher faecal corticosterone levels than mice of a genetically heterogeneous stock derived from four common laboratory inbred strains. Among the wild‐derived stocks, mice from Pohnpei and Majuro were significantly lighter and shorter than Idaho‐derived animals, even in populations kept from birth under identical housing conditions. Litter size and reproductive success rates did not differ significantly among the three wild‐derived stocks. Although further work will be needed to see if, as predicted, the wild‐derived stocks differ from one another and from laboratory mice in longevity, these stocks provide useful tools for genetic dissection of factors that regulate body size and reproductive success.

Keywords: Mus musculus, mice, islands, life history, specific pathogen‐free, genetics

REFERENCES

  1. Adler, G. H. & Levins, R. (1994). The island syndrome in rodent populations. Q. Rev. Biol. 69: 473–490. [DOI] [PubMed] [Google Scholar]
  2. Angerbjorn, A. (1986). Gigantism in island populations of wood mice (Apodemus) in Europe. Oikos 47: 47–56. [Google Scholar]
  3. Austad, S. N. (1993). Retarded senescence in an insular population of Virginia opossums (Didelphis virginiana). J. Zool. (Lond.) 229: 695–708. [Google Scholar]
  4. Austad, S. N. (1996). The uses of intraspecific variation in ageing research. Exp. Gerontol. 31: 453–463. [DOI] [PubMed] [Google Scholar]
  5. Barnett, S. A. & Dickson, R. G. (1989). Wild mice in the cold: some findings on adaptation. Biol. Rev. 64: 317–340. [DOI] [PubMed] [Google Scholar]
  6. Batten, C. J. & Berry, R. J. (1967). Prenatal mortality in wild‐caught house mice. J. Anim. Ecol. 36: 453–463. [Google Scholar]
  7. Berry, R. J. (1981). Town mouse, country mouse: adaptation and adaptability in Mus domesticus (M. musculus domesticus). Mammal. Rev. 11: 91–136. [Google Scholar]
  8. Berry, R. J. (1986). Genetics of insular populations of mammals, with particular reference to differentiation and founder effects in British small mammals. Biol. J. Linn. Soc. 28: 205–230. [Google Scholar]
  9. Berry, R. J. (1996). Small mammal differentiation on islands. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351: 753–764. [DOI] [PubMed] [Google Scholar]
  10. Berry, R. J. , Jakobson, M. E. & Peters, J. (1978). The house mice of the Faroe Islands: a study in microdifferentiation. J. Zool. (Lond.) 185: 73–92. [Google Scholar]
  11. Berry, R. J. & Peters, J. (1975). Macquarie Island house mice: a genetical isolate on a sub‐Antarctic island. J. Zool. (Lond.) 176: 375–389. [Google Scholar]
  12. Berry, R. J. , Sage, R. D. , Lidicker, W. Z. & Jackson, W. B. (1981). Genetical variation in three Pacific House mouse (Mus musculus) populations. J. Zool. (Lond.) 193: 391–404. [Google Scholar]
  13. Bronson, F. H. (1984). Energy allocation and reproductive development in wild and domestic house mice. Biol. Reprod. 31: 83–88. [DOI] [PubMed] [Google Scholar]
  14. Brown‐Borg, H. M. , Borg, K. E. , Meliska, C. J. & Bartke, A. (1996). Dwarf mice and the ageing process. Nature 384: 33–33. [DOI] [PubMed] [Google Scholar]
  15. Case, T. J. (1978). A general explanation for body size trends in terrestrial vertebrates. Ecology 59: 1–18. [Google Scholar]
  16. Charlesworth, B. (1980). Evolution in age‐structured populations. Cambridge : Cambridge University Press. [Google Scholar]
  17. Clark, B. R. & Price, E. O. (1981). Sexual maturation and fecundity of wild and domestic Norway rats (Rattus norvegicus). J. Reprod. Fertil. 63: 215–220. [DOI] [PubMed] [Google Scholar]
  18. Crowell, K. L. & Rothstein, S. I. (1981). Clutch sizes and breeding strategies among Bermudan and North American passerines. J. Reprod. Fertil. 123: 42–50. [Google Scholar]
  19. Davis, S. J. M. (1983). Morphometric variation of populations of house mice Mus domesticus in Britain and Faroe. J. Zool. (Lond.) 199: 521–534. [Google Scholar]
  20. Dohm, M. R. , Richardson, C. S. & Garland, T., Jr. (1994). Exercise physiology of wild and random‐bred laboratory house mice and their reciprocal hybrids. Am. J. Physiol. 267: 1098–1108. [DOI] [PubMed] [Google Scholar]
  21. Eigenmann, J. E. , Patterson, D. F. & Froesch, E. R. (1984). Body size parallels insulin‐like growth factor I levels but not growth hormone secretory capacity. Acta Endocrinol. 106: 448–453. [DOI] [PubMed] [Google Scholar]
  22. Keller, L. & Genoud, M. (1997). Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature 389: 958–960. [Google Scholar]
  23. Li, Y. , Deeb, B. , Pendergrass, W. & Wolf, N. (1996). Cellular proliferative capacity and life span in small and large dogs. J. Gerontol. A Biol. Sci. Med. Sci. 51: B403–408. [DOI] [PubMed] [Google Scholar]
  24. Lomolino, M. (1985). Body size of mammals on islands: the island rule reexamined. Am. Nat. 125: 310–316. [Google Scholar]
  25. MacArthur, R. H. & Wilson, E. O. (1967). The theory of island biogeography. Princeton , NJ : Princeton University Press. [Google Scholar]
  26. Marshall, J. T. J. (1962). House mouse In Pacific island rat ecology: 241–246. Storer T. I. (Ed.). Honolulu , HI : Bishop Museum. [Google Scholar]
  27. Medawar, P. T. (1952). An unsolved problem of biology. London : H. K. Lewis. [Google Scholar]
  28. Miller, R. A. , Chrisp, C. & Galecki, A. (1997). CD4 memory T cell levels predict lifespan in genetically heterogeneous mice. FASEB J. 11: 775–783. [DOI] [PubMed] [Google Scholar]
  29. Orentreich, N. , Matias, J. R. , DeFelice, A. & Zimmerman, J. A. (1993). Low methionine ingestion by rats extends life span. J. Nutr. 123: 269–274. [DOI] [PubMed] [Google Scholar]
  30. Ricklefs, R. E. (1998). Evolutionary theories of ageing: confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span. Am. Nat. 152: 24–43. [DOI] [PubMed] [Google Scholar]
  31. Roberts, R. C. (1961). The lifetime growth and reproduction of selected strains of mice. Heredity 16: 369–381. [Google Scholar]
  32. Smith, A. L. , Singleton, G. R. , Hansen, G. M. & Shellam, G. (1993). A serologic survey for viruses and Mycoplasma pulmonis among wild house mice (Mus domesticus) in southeastern Australia. J. Wildl. Dis. 29: 219–229. [DOI] [PubMed] [Google Scholar]
  33. Tomich, P. Q. , Wilson, N. & Lamourex, C. H. (1968). Ecological factors on Manana Island, Hawaii. Pacif.Sci. 22: 352–368. [Google Scholar]
  34. Wallace, M. E. (1981). The breeding, inbreeding and management of wild mice. Symp. zool. Soc. Lond. No. 47: 183–204. [Google Scholar]
  35. Weindruch, R. & Walford, R. L. (1988). The retardation of aging and disease by dietary restriction. Springfield , IL : Charles C. Thomas. [Google Scholar]
  36. Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution 11: 398–411. [Google Scholar]
  37. Williamson, M. (1981). Island populations. Oxford : Oxford University Press. [Google Scholar]

Articles from Journal of Zoology (London, England : 1987) are provided here courtesy of Wiley

RESOURCES