Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2009 Mar 23;219(2):269–307. doi: 10.1111/j.1469-7998.1989.tb02582.x

Morphometric patterns in Recent and fossil penguins (Aves, Sphenisciformes)

Bradley C Livezey 1
PMCID: PMC7166393  PMID: 32336888

Abstract

A total of 622 skin specimens, 527 skeletons, and myological data compiled by Schreiweis (1972) were used to investigate morphometric patterns within and among the 18 Recent species of Spheniscidae, and to compare the family with a fighted species, the common diving‐petrel (Pelecanoides urinator), considered by some authorities to be similar to the flighted ancestor of penguins. Fossil penguins also were studied using measurements from 111 skeletal elements representing 18 species. Most external and skeletal measurements follow interspecific rankings in body mass; the latter span a 30‐fold range from 1 kg in Eudyptula minor to 30 kg in Aptenodytes forsteri. Flighted Pelecanoides is only one‐tenth the mass of the smallest spheniscid. Wing areas and body masses of penguins maintain approximate geometric similitude among species; the allometric coefficient is 0.62 ± 0.04. Several skeletal elements are less derived in conformation in the fossil penguins than in modern confamilials. Despite great variation in the lengths of wing and leg skeletons, penguins show relative consistency in proportions of wing elements; pelvic proportions were more variable within the Spheniscidae. Proportions within both limbs are distinctly different from those of Pelecanoides. Analysis of correlation structures within species of penguin revealed three major subsets of skeletal variables that are highly intercorrelated: trunk‐skull lengths, appendicular‐trunk widths, and appendicular lengths. Within these groups, measurements tend to separate by anatomical region and, to a lesser degree, by limb.

Canonical analysis of skin and skeletal measurements revealed groupings of spheniscids on the basis of size and relatively complex shape variables. Cluster analyses of taxa on the canonical variates confirmed the similarity of congeners in Eudyptes, Eudyptula and Spheniscus; species of Aptenodytes and, to a lesser degree, Pygoscelis, are more heterogeneous. A cluster analysis of principal components of myological measurements tabulated by Schreiweis (1972) corresponded closely with phenetic groupings using external and skeletal variables. A canonical contrast between spheniscids and Pelecanoides indicated that the families differ in a relatively complex skeletal dimension that only in part reflects overall size.

Multivariate assessment of sexual dimorphism in external and skeletal variables indicated that: Eudyptula is least dimorphic; Aptenodytes, Eudyptes, Megadyptes and Spheniscus are moderately dimorphic; and Pygoscelis is most dimorphic. Pelecanoides shows comparatively low dimorphism.

Among‐species and within‐species first principal components of skeletal measurements (multivariate axes of skeletal ‘size’) differ from one another in their orientation, and both deviate from isometric size. The first principal component for skeletons of Pelecanoides also deviated from isometric size, but the direction of this allometry is fundamentally different from that in penguins.

Estimates of body mass for fossil penguins, based on principal components of available skeletal measurements, indicate that fossil species ranged from 3 kg to 81 kg in total mass; the largest fossil species was approximately 2.5 times as massive as the largest extant spheniscid.

Much of the morphometric variation in the Spheniscidae is explainable on locomotory, ecological and thermodynamic grounds, and the associated phenetic groupings conform broadly with traditional generic classifications. The evolutionary significance of mensural correlations, allometric trends and differences between fossil and Recent species are discussed, and the need for a phylogenetic analysis of this highly specialized family of winged‐propelled diving birds is stressed.

Reference

  1. Ainley, D. G. & Emison, W. B. (1972). Sexual size dimorphism in Adelie penguins. Ibis 114: 267–271. [Google Scholar]
  2. Bannasch, R. (1986a). Morphologisch‐funktionelle Untersuchung am Lokomotionsapparat der Pinguine als Grundlage fur ein allgemeines Bewegungsmodell des “Unterwasserfluges”. Teil I. Gegenbaurs morph. Jb. 132: 645–679. [PubMed] [Google Scholar]
  3. Bannasch, R. (1986b). Morphologisch‐funktionelle Untersuchung am Lokomotionsapparat der Pinguine als Grundlage fur ein allgemeines Bewegungsmodell des “Unterwasserfluges”. Teil II. Gegenbaurs morph. Jb. 132: 757–817. [PubMed] [Google Scholar]
  4. Bannasch, R. (1987). Morphologisch‐funktionelle Untersuchung am Lokomotionsapparat der Pinguine als Gundlage fur ein allgemeines Bewegungsmodell des “Unterwasserfluges”. Teil III. Gegenbaurs morph. Jb. 133: 39–59. [PubMed] [Google Scholar]
  5. Boersma, P. D. (1976). An ecological and behavioral study of the Galapagos penguin. Living Bird 15: 43–93. [Google Scholar]
  6. Butler, P. J. & Woakes, A. J. (1984). Heart rate and aerobic metabolism in Humboldt penguins, Spheniscus humboldti, during voluntary dives. J. exp. Biol. 108: 419–428. [DOI] [PubMed] [Google Scholar]
  7. Calder, W. A., III. (1974). Consequences of body size for avian energetics. Publs Nuttall Orn. Club No. 15: 86–144.
  8. Calder, W. A., III. (1984). Size, function, and life history. Cambridge : Harvard Univ. Press. [Google Scholar]
  9. Cheverud, J. M. (1982). Relationships among ontogenetic, static, and evolutionary allometry. Am. J. phys. Anthrop. 59: 139–149. [DOI] [PubMed] [Google Scholar]
  10. Clark, B. D. & Bemis, W. (1979). Kinematics of swimming of penguins at the Detroit Zoo. J. Zool., Lond. 188: 411–428. [Google Scholar]
  11. Clark, R. J. (1971). Wing‐loading–a plea for consistency in usage. Auk 88: 927–928. [Google Scholar]
  12. Coues, E. (1872). Material for a monograph of the Spheniscidae. Proc. Acad. nat. Sci. Philad. 1872: 170–212. [Google Scholar]
  13. Cracraft, J. (1976). Covariation patterns in the postcranial skeleton of moas (Aves, Dinornithidae): a factor analytic study. Paleobiology 2: 166–173. [Google Scholar]
  14. Croxall, J. P. & Prince, P. A. (1980). Food, feeding ecology and ecological segregation of seabirds at South Georgia. Biol. J. Linn. Soc. 14: 103–131. [Google Scholar]
  15. Croxall, J. P. , Prince, P. A. , Baird, A. & Ward, P. (1985). The diet of the Southern rockhopper penguin Eudyptes chrysocome chrysocome at Beauchêne Island, Falklands Islands. J. Zool., Lond. 206: 485–496. [Google Scholar]
  16. Dabelow, A. (1925). Die Schwimmanpassung der Vögel. Ein Beitrag zur biologischen Anatomie der Fortbewegung. Morph. Jb. 54: 288–321. [Google Scholar]
  17. Dinnendahl, L. & Kramer, G. (1957). Über grössenabhängige Änderungen von Körperproportionen bei Möwen (Larus ridibundus, L. canus, L. argentatus, L. marinus). J. Orn. Lpz. 98: 282–312. [Google Scholar]
  18. Dixon, W. J. (Chief Ed.) (1985). BMDP statistical software. Berkeley : Univ. California Press. [Google Scholar]
  19. Downhower, J. F. (1976). Darwin's finches and the evolution of sexual dimorphism in body size. Nature, Lond. 263: 558–563. [DOI] [PubMed] [Google Scholar]
  20. Falla, R. A. & Mougin, J.‐L. (1979). Order Sphenisciformes In Checklist of birds of the world 1 (2nd edn): 121–134. Mayr E. & Cottrell G. W. (Eds). Cambridge , Mass. : Museum of Comparative Zoology. [Google Scholar]
  21. Feduccia, A. (1980). The age of birds. Cambridge , Mass. : Harvard Univ. Press. [Google Scholar]
  22. Feinsinger, P. , Colwell, R. K. , Terborgh, J. & Chaplin, S. B. (1979). Elevation and the morphology, flight energetics, and foraging ecology of tropical hummingbirds. Am. Nat. 113: 481–497. [Google Scholar]
  23. Filhol, H. (1885). Observations anatomiques, relative à diverses especes de manchots In Recueil de mémoires, rapports et documents relatifs à l'observation du passage de Vénus sur le soleil 3 (2): mission de l'île Campbell: recherches zoologiques, botaniques et géologiques faites à l'île Campbell et en Nouvelle‐Zélande: 35–339. Paris : Académie des Sciences. [Google Scholar]
  24. Fürbringer, M. (1888). Untersuchungen zur Morphologie und Systematik der Vögel, zugleich ein Beitrag zur Anatomie der Stütz‐ und Bewegungsorgane. Amsterdam : Van Holkema. [Google Scholar]
  25. Gervais, P. & Alix, E. (1877). Ostéologie et myologie des manchots ou sphéniscidés. J. Zool., Paris 6: 424–472. [Google Scholar]
  26. Gould, S. J. (1966). Allometry and size in ontogeny and phylogeny. Biol. Rev. 41: 587–640. [DOI] [PubMed] [Google Scholar]
  27. Greenewalt, C. H. (1962). Dimensional relationships for flying animals. Smithson. misc. Collns 144: 1–46. [Google Scholar]
  28. Greenewalt, C. H. (1975). The flight of birds. Trans. Am. phil. Soc. (N.S.) 65: 1–67. [Google Scholar]
  29. Gregory, W. K. (1935). Remarks on the origins of the ratites and penguins. Proc. Linn. Soc. N. Y. 45–46: 1–18. [Google Scholar]
  30. Harrison, C. J. O. (1977). The limb osteology of the diving petrels and the little auk as evidence of the retention of characters in morphologically covergent species. Ardea 65: 43–52. [Google Scholar]
  31. Hui, C. A. (1981). The aerial flight of penguins. Am. Zool. 21: 924. [Google Scholar]
  32. Hui, C. A. (1983). Energetics of penguin swimming. Am. Zool. 23: 956. [Google Scholar]
  33. Hui, C. A. (1985). Maneuverability of the Humboldt penguin (Spheniscus humboldti) during swimming. Can. J. Zool. 63: 2165–2167. [Google Scholar]
  34. Huxley, J. S. (1932). Problems of relative growth. London : Methuen. [Google Scholar]
  35. James, H. F. & Olson, S. L. (1983). Flightless birds. Nat. Hist., N. Y. 92: 30–40. [Google Scholar]
  36. Jolicoeur, P. (1963). The multivariate generalization of the allometry equation. Biometrics 19: 497–499. [Google Scholar]
  37. Jolliffe, I. T. (1986). Principal component analysis. New York : Springer Verlag. [Google Scholar]
  38. Jouanin, C. & Mougin, J.‐L. (1979). Order Procellariiformes In Checklist of birds of the world 1: 48–121. (2nd edn). Mayr E. & Cottrell G. W. (Eds). Cambridge , Mass : Museum of Comparative Zoology. [Google Scholar]
  39. Kinsky, F. C. (1960). The yearly cycle of the northern blue penguin (Eudyptula minor novaehollandiae) in the Wellington Harbour area. Rec. Dom. Mus. Wellington 3: 145–218. [Google Scholar]
  40. Kinsky. F. C. & Falla, R. A. (1976). A subspecific revision of the Australasian blue penguin (Eudyptula minor) in the New Zealand area. Rec. nat. Mus. Z.Z. 1: 105–126. [Google Scholar]
  41. Kodric‐Brown, A. & Brown, J. H. (1978). Influence of economics, interspecific competition, and sexual dimorphism on territoriality of migrant rufous hummingbirds. Ecology 59: 285–296. [Google Scholar]
  42. Kodric‐Brown, A. , Brown, J. H. , Byers, G. S. & Gori, D. F. (1984). Organization of a tropical island community of hummingbirds and flowers. Ecology 65: 1385–1368. [Google Scholar]
  43. Kooyman, G. L. (1975). Behaviour and physiology of diving In The biology of penguins: 115–137. Stonehouse B. (Ed.). London & Basingstoke : Macmillan Press. [Google Scholar]
  44. Kooyman, G. L. , Davis, R. W. , Croxall, J. P. & Costa, D. P. (1982). Diving depths and energy requirements of king penguins. Science, N.Y. 217: 726–727. [DOI] [PubMed] [Google Scholar]
  45. Kooyman, G. L. , Drabek, C. M. , Elsner, R. & Campbell. W. B. (1971). Diving behavior of the emperor penguin, Aptenodytes forsteri. Auk 88: 775–795. [Google Scholar]
  46. Kuroda, N. (1967). Morpho‐anatomical analysis of parallel evolution between diving petrel and ancient auk, with comparative osteological data of other species. Misc. Rep. Yamashina Inst. Orn. 5: 111–137. [Google Scholar]
  47. Livezey, B. C. (1988). Morphometrics of flightlessness in the Alcidae. Auk 105: 681–698. [Google Scholar]
  48. Livezey, B. C. & Humphrey, P. S. (1984). Sexual dimorphism in continental steamer‐ducks. Condor 86: 368–377. [Google Scholar]
  49. Livezey, B. C. & Humphrey, P. S. (1986). Flightlessness in steamer‐ducks (Anatidae: Tachyeres): its morphological bases and probable evolution. Evolution, Lawrence, Kans. 40: 540–558. [DOI] [PubMed] [Google Scholar]
  50. Løvtrup, S. & Mild, K. H. (1979). Limb bone robustness: natural selection or allometric growth Bull. biol. Fr. Belg. 113: 53–69. [Google Scholar]
  51. Lowe, P. R. (1933). On the primitive characters of the penguins, and their bearing on the phylogeny of birds. Proc. zool. Soc. Lond. 1933: 483–538. [Google Scholar]
  52. Lowe, P. R. (1939). Some additional notes on Miocene penguins in relation to their origin and systematics. Ibis 81: 281–294. [Google Scholar]
  53. Marples, B. J. (1952). Early Tertiary penguins of New Zealand. Paleont. Bull. Wellington 20: 1–66. [Google Scholar]
  54. McMahon, T. (1975). Allometry and biomechanics: limb bones in adult ungulates. Am. Nat. 109: 547–563. [Google Scholar]
  55. Meister, W. (1962). Histological structure of the long bones of penguins. Anat. Rec. 143: 377–388. [DOI] [PubMed] [Google Scholar]
  56. Menzbier, M. (1887). Vergleichende Osteologie der Pinguine in Anwendung zur Haupteintheilung der Vögel. Bull. Soc. Nat. Moscou (N.S.) 1: 483–587. [Google Scholar]
  57. Meunier, K. (1951). Korrelation und Umkonstruktion in den Grössenbeziehungen zwischen Vogelflügel und Vogelkörper. Biologia gen. 19: 403–443. [Google Scholar]
  58. Miller, L. & Howard, H. (1949). The flightless Pliocene bird Mancalla. Publs Carnegie Instn No. 584: 201–228.
  59. Monlague, T. (1985). A maximum dive recorder for little penguins. Emu 85: 264–267. [Google Scholar]
  60. Mordvinov, Yu. E. (1980). Hydrodynamics of the rockhopper penguin. Soviet J. mar. Res. 6: 282–285. [Google Scholar]
  61. Mosimann, J. E. & James, F. C. (1979). New statistical methods for allometry with application to Florida red‐winged blackbirds. Evolution, Lawrence, Kans. 33: 444–459. [DOI] [PubMed] [Google Scholar]
  62. Murphy, R. C. & Harper, F. (1921). A review of the diving petrels. Bull. Am. Mus. nat. Hist. 44: 495–554. [Google Scholar]
  63. O'Brien, P. J. (1940). Some observations on the breeding habits and general characteristics of the white‐flippered penguin (Eudyptula albosignata Finsch). Rec. Canterbury Mus. 4: 311–324. [Google Scholar]
  64. Olson, S. L. (1973). Evolution of the rails of the South Atlantic islands (Aves: Rallidae). Smithson. Contr. Zool. No. 152: 1–53.
  65. Olson, S. L. (1980). A new genus of penguin‐like pelecaniform bird from the Oligocene of Washington (Pelecaniformes: Plotopteridae). Contr. Sci. Los Angeles No. 330: 51–57.
  66. Olson, S. L. & Hasegawa, Y. (1979). Fossil counterparts of giant penguins from the north Pacific. Science, N. Y. 206: 688–689. [DOI] [PubMed] [Google Scholar]
  67. Owen, R. (1866). Comparative anatomy and physiology of vertebrates 2. London : Longmans, Green & Co. [Google Scholar]
  68. Pagel, M. D. Harvey, P. H. (1988). The taxon‐level problem in the evolution of mammalian brain size: facts and artifacts. Am. Nat. 132: 344–359. [Google Scholar]
  69. Pennycuick, C. J. (1975). Mechanics of flight In Avian biology 5: 1–75. Farner D. S. & King J. R. (Eds). New York : Academic Press. [Google Scholar]
  70. Pennycuick, C. J. (1987). Flight of auks (Alcidae) and other northern seabirds compared with southern Procellariiformes: ornithodolite observations. J. exp. Biol. 128: 335–347. [Google Scholar]
  71. Peters, R. H. (1983). The ecological implications of body size. Cambridge : Cambridge Univ. Press. [Google Scholar]
  72. Pimentel, R. A. (1979). Morphometrics: the multivariate analysis of biological data. Dubuque : Kendall/Hunt Publ. [Google Scholar]
  73. Power, D. M. (1971). Statistical analysis of character correlations in Brewer's blackbirds. Syst. Zool. 20: 186–203. [Google Scholar]
  74. Prothero, J. (1986). Methodological aspects of sealing in biology. J. theor. Biol. 118: 259–286. [DOI] [PubMed] [Google Scholar]
  75. Pycraft, W. P. (1898). Contributions to the osteology of birds. Part II. Impennes. Proc. zool. Soc. Lond. 1898: 958–989. [Google Scholar]
  76. Raikow, R. J. (1985). Locomotor system In Form and function in birds 3: 57–147. King A. S. & McLelland J. (Eds). London , Orlando, etc. : Academic Press. [Google Scholar]
  77. Raikow, R. J. , Bicanovsky, L. & Bledsoe, A. H. (1988). Forelimb and joint mobility and the evolution of wing‐propelled diving in birds. Auk 105: 46–451. [Google Scholar]
  78. Rayner, J. M. V. (1985). Vorticity and propulsion mechanics in swimming and flying vertebrates In Konstniktionsprinzipien lebender und ausgestorbener Reptilien: 89–117. Riess J. & Frey E. (Eds). Universities of Stuttgart & Tübingen. (Konzepte SFB 230 4.). [Google Scholar]
  79. Reid, J. (1835). Anatomical description of the Patagonian penguin (Aptenodytes patachonica, Forst.). Proc. zool. Soc. Lond. 1835: 132–148. [Google Scholar]
  80. Richdale, L. E. (1951). Sexual behavior in penguins. Lawrence : Univ. Kansas Press. [Google Scholar]
  81. Saiff, E. (1976). Anatomy of the middle ear region of the avian skull: Sphenisciformes. Auk 93: 749–759. [Google Scholar]
  82. Schmidt‐Nielsen, K. (1972). Locomotion: energy cost of swimming, flying, and running. Science, N. Y. 177: 222–228. [DOI] [PubMed] [Google Scholar]
  83. Schmidt‐Nielsen, K. (1984). Scaling: why is animal size so important? Cambridge : Cambridge Univ. Press. [Google Scholar]
  84. Schreiweis, D. O. (1972). A comparative study of the appendicular musculature of the Order Sphenisciformes. PhD thesis, Washington State Unin., Pullman . [Google Scholar]
  85. Schreiweis, D. O. (1982). A comparative study of the appendicular musculature of penguins (Aves: Sphenisciformes). Smithson. Contr. Zool. No. 341: 1–46.
  86. Scolaro, J. A. (1987). Sexing fledglings and yearlings of Magellanic penguins by discriminant analysis of morphometric measurements. Colon. Waterbirds. 10: 50–54. [Google Scholar]
  87. Scolaro, J. A. , Hall, M. A. & Ximenez, I. M. (1983). The Magellanic penguin (Spheniscus magellanicus): sexing adults by discriminant analysis of morphometric characters. Auk 100: 221–224. [Google Scholar]
  88. Selander, R. K. (1966). Sexual dimorphism and differential niche utilization in birds. Condor 68: 113–151. [Google Scholar]
  89. Selander, R. K. (1972). Sexual selection and dimorphism in birds In Sexual selection and the descent of man, 1871–1971: 180–230. Campbell B. (eds.). Chicago : Aldine Publ. [Google Scholar]
  90. Shufeldt, R. W. (1901). Osteology of the penguins. J. Anat. Physiol., Lond. (2) 15: 390–404. [PMC free article] [PubMed] [Google Scholar]
  91. Shtegman, B. K. (1970). [Peculiarities of penguin wing morphology]. Trudy Zool. Inst. Leningr. 47: 236–248. [In Russian]. [Google Scholar]
  92. Sibley, C. G. (1960). The electrophoretic patterns of avian egg‐white proteins as taxonomic characters. Ibis 102: 215–284. [Google Scholar]
  93. Simpson, G. G. (1946). Fossil penguins. Bull. Am. Mus. nat. Hist. 87: 1–99. [Google Scholar]
  94. Simpson, G. G. (1957). Australian fossil penguins, with remarks on penguin evolution and distribution. Rec. S. Aust. Mus. 13: 51–70. [Google Scholar]
  95. Simpson, G. G. (1970). Ages of fossil penguins in New Zealand. Science, N.Y. 168: 361–362. [DOI] [PubMed] [Google Scholar]
  96. Simpson. G. G. (1971a). A review of the pre‐Pliocene penguins of New Zealand. Bull. Am. Mus. nat. Hist. 144: 319–378. [Google Scholar]
  97. Simpson, G. G. (1971b). Review of fossil penguins from Seymour Island. Proc. R. Soc. (B) 178: 357–378. [Google Scholar]
  98. Simpson, G. G. (1972a). Pliocene penguins from North Canterbury, New Zealand. Rec. Canterbury Mus. 9: 159–182. [Google Scholar]
  99. Simpson, G. G. (1972b). Conspectus of Patagonian fossil penguins. Am. Mus. Novit. No. 2488: 1–37. [Google Scholar]
  100. Simpson, G. G. (1975). Fossil penguins In The biology of penguins: 19–41. Stonehouse B. (Ed.). London & Basingstoke : Macmillan Press. [Google Scholar]
  101. Simpson, G. G. (1976). Penguins. Past and present, here and there. New Haven : Yale Univ. Press. [Google Scholar]
  102. Simpson, G. G. (1984). Tempo and mode in evolution. New York : Columbia Univ. Press. [Google Scholar]
  103. Sladen, W. J. L. (1958). The pygoscelid penguins. Scient. Rep. Falkd Isl. Depend. Surv. 17: 1–97. [Google Scholar]
  104. Somers, K. M. (1986). Multivariate allometry and removal of size with principal components analysis. Syst. Zool. 35: 359–368. [Google Scholar]
  105. Sparks, J. & Soper, T. (1987). Penguins. (2nd edn). Newton Abbott & London : David & Charles. [Google Scholar]
  106. Spellerberg, I. F. (1975). The predators of penguins In The biology of penguins: 413–434. Stonehouse B. (Ed.). London & Basingstoke : Macmillan Press. [Google Scholar]
  107. Stonehouse, B. (1967). The general biology and thermal balances of penguins. Adv. ecol. Res. 4: 131–196. [Google Scholar]
  108. Stonehouse, B. (1969). Environmental temperatures of Tertiary penguins. Science, N. Y. 163: 673–675. [DOI] [PubMed] [Google Scholar]
  109. Stonehouse, B. (1970). Adaptation in polar and subpolar penguins (Spheniscidae) In Antarctic ecology 1: 526–541. Holdgate M. W. (Eds.) London & New York : Academic Press. [Google Scholar]
  110. Stonehouse, B. (1971). The Snares Islands penguin Eudyptes robustus. Ibis 113: 1–7. [Google Scholar]
  111. Stonehouse, B. (1975). Introduction: the Spheniscidae In The biology of penguins: 1–15. Stonehouse B. (Ed.). London & Basingstoke : Macmillan Press. [Google Scholar]
  112. Storer, R. W. (1960). Evolution in the diving birds. Proc. Int. orn. Congr. 12: 694–707. [Google Scholar]
  113. Storer, R. W. (1971). Adaptive radiation of birds In Avian biology 1: 149–188. Farner D. S. & King J. R. (Eds). New York & London : Academic Press. [Google Scholar]
  114. Townsend, C. W. (1909). The use of the wings and feet by diving birds. Auk 26: 234–248. [Google Scholar]
  115. Trivelpiece, W. Z. , Bengtson, J. L. , Trivelpiece, S. G. & Volkman, N. J. (1986). Foraging behavior of gentoo and chinstrap penguins as determined by new radiotelemetry techniques. Auk 103: 777–781. [Google Scholar]
  116. Verheyen, R. (1958). Convergence ou paramorphogenèse. Systématique et phylogenie des manchots (Sphenisciformes). Gerfaut 48: 43–69. [Google Scholar]
  117. Volkman, N. J. & Trivelpiece, W. (1980). Growth in pygoscelid penguin chicks. J. Zool., Lond. 191: 521–530. [Google Scholar]
  118. Warham, J. (1963). The rockhopper penguin, Eudyptes chrysocome, at Macquarie Island. Auk 80: 229–256. [Google Scholar]
  119. Warham, J. (1971). Aspects of breeding behaviour in the royal penguin Eudyptes chrysolophus schlegeli. Notornis 18: 91–115. [Google Scholar]
  120. Warham, J. (1972a). Breeding seasons and sexual dimorphism in rockhopper penguins. Auk 89: 86–105. [Google Scholar]
  121. Warham, J. (1972b). Aspects of the biology of the erect‐crested penguin Eudyptes sclateri. Ardea 60: 145–184. [Google Scholar]
  122. Warham, J. (1974a). The breeding biology and behaviour of the Snares crested Penguin. J. R. Soc. N. Z. 4: 63–108. [Google Scholar]
  123. Warham, J. (1974b). The Fiordland crested penguin Eudyptes pachyrhynchus. Ibis 116: 1–27. [Google Scholar]
  124. Warham, J. (1975). The crested penguins In The biology of penguins: 189–269. Stonehouse B. (Ed.). London & basingstoke : Macmillan Press. [Google Scholar]
  125. Warham, J. (1977). Wing loadings, wing shapes, and flight capabibities of Procellariiformers. N. Z. Zool. 4: 73–83. [Google Scholar]
  126. Watson, M. (1883). Report on the anatomy of the Spheniscidae collected during the voyage of H.M.S. Challenger. In Report on the scientific results of the voyage of H.M.S. Challenger during the years 1873–76. Zoology VII: 1–244. Murray, J. (Ed.). Edinburgh: Neil & Co.
  127. Welsh, A. H. , Peterson, A. T. & Altmann, S. A. (1988). The fallacy of averages. Am. Nat. 132: 277–288. [Google Scholar]
  128. Wiley, E. O. (1981). Phylogenetics. The theory and practice of phylogenetic systematics. New York : John Wiley and Sons. [Google Scholar]
  129. Wilson, R. P. (1985). The jackass penguin (Spheniscus demersus) as a pelagic predator. Mar. Ecol. Progr. Ser. 25: 219–227. [Google Scholar]
  130. Wiman, C. & Hessland, I. (1942). On the garfowl, Alca impennis L., and the sternum of birds. Nov. Acta R. Soc. Scient. Uppsal. (4)13>(2): 1–28. [Google Scholar]
  131. Zusi, R. L. (1975). An interpretation of skull structure in penguins In The biology of penguins: 59–84. Stonehouse B. (Ed.). London & Basingstoke : Macmillan Press. [Google Scholar]

Articles from Journal of Zoology (London, England : 1987) are provided here courtesy of Wiley

RESOURCES