Abstract
It is well established that several wild aquatic bird species serve as reservoirs for the influenza A virus. It has also been shown that the influenza A virus can be transmitted to mammalian species such as tigers and domestic cats and dogs through ingestion of infected birds. Another group of animals that should also be considered as potential hosts for the influenza A virus are the crocodilians. Many crocodilian species share aquatic environments with wild birds that are known to harbor influenza viruses. In addition, many large crocodilians utilize birds as a significant food source. Given these factors in addition to the close taxonomic proximity of aves to the crocodilians, it is feasible to ask whether crocodilian species may also harbor the influenza A virus. Here we analyzed 37 captive crocodilians from two locations in Florida (plus 5 wild bird fecal‐samples from their habitat) to detect the presence of influenza A virus. Several sample types were examined. Real‐time RT‐PCR tests targeting the influenza A matrix gene were positive for four individual crocodilians—Alligator sinensis, Paleosuchus trigonatus, Caiman latirostris and Crocodylus niloticus. Of the seven serum samples tested with the avian influenza virus agar gel immunodiffusion assay, three showed a nonspecific reaction to the avian influenza virus antigen—A. sinensis, P. trigonatus and C. niloticus (C. latirostris was not tested). Viable virus could not be recovered from RT‐PCR‐positive samples, although this is consistent with previous attempts at viral isolation in embryonated chicken eggs with crocodilian viruses. J. Exp. Zool. 309A:571–580, 2008. © 2008 Wiley‐Liss, Inc.
LITERATURE CITED
- Alfonso CP, Cowen BS, van Campen H. 1995. Influenza A viruses isolated from waterfowl in two wildlife management areas of Pennsylvania. J Wildl Dis 31:179–185. [DOI] [PubMed] [Google Scholar]
- Das A, Spackman E, Senne D, Pedersen J, Suarez DL. 2006. Development of an internal positive control for rapid diagnosis of avian influenza virus infections by real‐time reverse transcription‐PCR with lyophilized reagents. J Clin Microbiol 44:3065–3073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doi R, Oya A, Shirasaka A, Yabe S, Sasa M. 1983. Studies on Japanese encephalitis virus infection of reptiles. II Roles of lizards on hibernation of Japanese encephalitis virus. Jpn J Exp Med 53:125–134. [PubMed] [Google Scholar]
- Elsey RM, Trosclair PL III, Linscombe JT. 2004. The American alligator as a predator of mottled ducks. Southeast Nat 3:381–390. [Google Scholar]
- Elvinger F, Akey BL, Senne DA, Pierson FW, Porter‐Spalding BA, Spackman E, Suarez DL. 2007. Characteristics of diagnostic tests used in the 2002 low‐pathogenicity avian influenza H7N2 outbreak in Virginia. J Vet Diagn Invest 19:341–348. [DOI] [PubMed] [Google Scholar]
- Gabrey SW, Elsey RM. 2008. Birds as prey of American alligators. Louisiana Academy of Sciences. [Google Scholar]
- Grigg G, Seebacher F. 2001. Crocodilian thermal relations In: Grigg GC, Seebacher F, Franklin CE, editors. Crocodilian biology and evolution. Chipping Norton: Surrey Beatty and Sons; p 297–309. [Google Scholar]
- Halvorson DA, Kelleher CJ, Senne DA. 1985. Epizootiology of avian influenza: effect of season on incidence in sentinel ducks and domestic turkeys in Minnesota. Appl Environ Microbiol 49:914–919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huchzermeyer FW. 2000. Biosecurity and the prevention of stress‐mediated immune suppression on crocodile farms. In: Crocodiles; Proceedings of the 15th Working Meeting of the Crocodile Specialist Group, IUCN—World Conservation Union. IUCN, Gland, Switzerland. p 102–108.
- Huchzermeyer FW. 2003. Crocodiles: biology, husbandry and diseases. CABI Publishing. [Google Scholar]
- Jacobson ER, Ginn PE, Troutman JM, Farina L, Stark L, Klenk K, Burkhalter KL, Komar N. 2005a. West Nile virus infection in farmed American alligators (Alligator mississippiensis) in Florida. J Wildl Dis 41:96–106. [DOI] [PubMed] [Google Scholar]
- Jacobson ER, Johnson AJ, Hernandez JA, Tucker SJ, Dupuis II AP, Stevens R, Carbonneau D, Stark L. 2005b. Validation and use of an indirectenzyme‐linked immunosorbant assay for detection of antibodies to West Nile virus in American alligators (Alligator mississippiensis) in Florida. Wildl Dis 41:107–114. [DOI] [PubMed] [Google Scholar]
- Keawcharoen J, Oraveerakul K, Kuiken T, Fouchier RA, Amonsin A, Payungporn S, Noppornpanth S, Wattanodorn S, Theambooniers A, Tantilertcharoen R, Pattanarangsan R, Arya N, Ratanakorn P, Osterhaus DM, Poovorawan Y. 2004. Avian influenza H5N1 in tigers and leopards. Emerg Infect Dis 10:2189–2191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klenk K, Snow J, Morgan K, Bowen R, Stephens M, Foster F, Gordy P, Beckett S, Komar N, Gubler D, Bunning M. 2004. Alligators as West Nile virus amplifiers. Emerg Infect Dis 10:2150–2155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kostiukov MA, Gordeeva EE, Bulychev VP, Hemova NV, Daniyarov OA, Tuktaev TM. 1985. The lake frog (Rana ridibunda)—one of the food hosts of blood‐sucking mosquitoes in Tadzhikistan—a reservoir of the West Nile fever virus. Med Parazitol (Mosk) 3:49–50. [PubMed] [Google Scholar]
- Krauss S, Walker D, Pryor SP, Niles L, Chenghong L, Hinshaw VS, Webster RG. 2004. Influenza A viruses in migrating aquatic birds in North America. Vector Bourne Zoonotic Dis 4:177–189. [DOI] [PubMed] [Google Scholar]
- Lance VA, Morici LA, Elsey RM. 2001. Physiology and endocrinology of stress in crocodiles In: Grigg GC, Seebacher F, Franklin CE, editors. Crocodilian biology and evolution. Chipping Norton: Surrey Beatty and Sons; p 297–309. [Google Scholar]
- Mancini DA, Mendonça RM, Cianciarullo AM, Kobashi LS, Trindade HG, Fernandes W, Pinto JR. 2004. Influenza in heterothermic animals. Rev Soc Bras Med 37:204–209. [DOI] [PubMed] [Google Scholar]
- Miller DL, Mauel MJ, Baldwin C, Burtle G, Ingram D, Hines ME, Frazier KS. 2003. West Nile virus in farmed alligators. Emerg Infect Dis 9:794–799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nevarez JG. 2007. Lymphohistiocytic proliferative syndrome of alligators (Alligator mississippiensis): a cutaneous manifestation of West Nile virus. PhD dissertation. Louisiana State University, Baton Rouge, LA.
- Nevarez JG, Mitchell MA, Young Kim D, Poston R, Lampinen HM. 2005. West Nile virus in alligator, Alligator mississippiensis, ranches from Louisiana. J Herp Med Surg 15:10–15. [Google Scholar]
- Pooley AC. 1989. Food and feeding habits In: Ross CA, consult editor. Crocodiles and alligators. New York: Facts on File, p 76–91. [Google Scholar]
- Slemons RD, Johnson DC, Osborn JS, Hayes F. 1974. Type‐A influenza viruses isolated from wild free‐flying ducks in California. Avian Dis 18:119–124. [PubMed] [Google Scholar]
- Songserm T, Amonsin A, Jam‐on R, Sae‐Heng N, Meemak N, Pariyothorn N, Payungporn S, Theamboonlers A, Poovorawan Y. 2006a. Avian influenza H5N1 in naturally infected domestic cat. Emerg Inf Dis 12:681–683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Songserm T, Amonsin A, Jam‐on R, Sae‐Heng N, Pariyothorn N, Payungporn S, Theamboonlers A, Chutinimitkul S, Thanawongnuwech R, Poovorawan Y. 2006b. Fatal avian influenza A H5N1 in a dog. Emerg Infect Dis 12:1744–1747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spackman E, Senne DA, Myers TJ, Bulaga LL, Garber LP, Perdue ML, Lohman K, Daum LT, Suarez DL. 2002. Development of a real‐time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol 40:3256–3260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spackman E, Stallknecht DE, Slemons RD, Winker K, Suarez DL, Scott M, Swayne DE. 2005. Phylogenetic analyses of type A influenza genes in natural reservoir species in North America reveals genetic variation. Virus Res 114:89–100. [DOI] [PubMed] [Google Scholar]
- Stallknecht DE, Shane SM, Zwank PJ, Senne DA, Kearney MT. 1990a. Avian influenza viruses from migratory and resident ducks of coastal Louisiana. Avian Dis 34:398–405. [PubMed] [Google Scholar]
- Stallknecht DE, Shane SM, Kearney MT, Zwank PJ. 1990b. Persistence of avian influenza viruses in water. Avian Dis 34:406–411. [PubMed] [Google Scholar]
- Steinman A, Banet‐Noach C, Tal S, Levi O, Simanov L, Perk M, Malkinson M, Shpigel N. 2003. West Nile virus infection of crocodiles [letter]. Emerg Infect Dis 9:887–889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sues H. 1989. The place of crocodilians in the living world In: Ross CA, consult editor. Crocodiles and alligators. New York: Facts on File; p 14–25. [Google Scholar]
- Swayne DE, Senne DA, Beard CW. 1998. Avian Influenza In: Swayne DE, editor. A laboratory manual for the isolation and identification of avian pathogens, 4th edition Kennett Square, PA: American Association of Avian Pathologists; p 150–155. [Google Scholar]
- Vahlenkamp T, Harder TC. 2006. Influenza infections in mammals. Berl Munch Tierarztl Wochenschr 119:123–131. [PubMed] [Google Scholar]
- Wallensten A, Munster VJ, Latorre‐Margalef N, Brytting M, Elmberg J, Fouchier RA, Fransson T, Haemig PD, Karlsson M, Lundkvist A, Osterhaus AD, Stervander M, Waldenstrom J, Olsen B. 2007. Surveillance of influenza A virus in migratory waterfowl in northern Europe. Emerg Infect Dis 13:404–411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Webster RG, Yakhno M, Hinshaw VS, Bean WJ, Murti KG. 1978. Intestinal influenza: replication and characterization of influenza viruses in ducks. Virology 84:268–278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zippel KC, Lillywhite HB, Mladinich CR. 2003. Anatomy of the crocodilian spinal vein. J Morphol 258:327–335. [DOI] [PubMed] [Google Scholar]
