Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2009 Mar 13;44(6):1223–1230. doi: 10.1002/jhet.5570440601

Oxidation of N‐heterocyclics: A green approach

Ganarajan Sivasubramanian, Veembil Ramachandran Parameswaran 1
PMCID: PMC7166534  PMID: 32336783

Abstract

chemical structure image

Environmentally benign oxidation methods satisfy the postulates of green chemistry. Heterocyclic Noxides have applications in synthetic organic chemistry, chemotherapy and agrochemicals. Synthesis of Noxides using green oxidants will be attractive over the conventional methods. The presence of the N‐oxide group in the azine ring makes it more subject to electrophilic and nucleophilic attack and substantially expands the synthetic approaches for the modification of nitrogen‐containing heterocyclics. That is the reason for the increasing interest in the chemistry of heterocyclic N‐oxides. Some reactions adopted for oxidation of N‐heterocyclics have been discussed. Stereochemical and spectroscopic aspects have been mentioned. It will be advantageous if anchored catalysts are employed for industrial exploitation. Several physiochemical aspects of various methods have been discussed.

References

  • 1. Sheldon, R. A. ; Kochi, J. K. Metal‐Catalysed Oxidation of Organic Compounds, Academic Press, New York, NY, 1981. [Google Scholar]
  • 2.a Mijs, W. J. ; de Jonge, C. R. H. I. Organic Synthesis by Oxidation With Metal Compounds, Plenum press, New York, NY, 1986. [Google Scholar]; b Trost, B. M. ; Fleming, I. A. Comprehensive Organic Synthesis, Pergamon Press, Oxford, Vol 7, 1991c) [Google Scholar]; Hudlicky, M. Oxidations in Organic Chemistry, ACS Monograph Ser‐186, American Chemical Society, Washington D.C. 1990. [Google Scholar]
  • 3. Anastas, P. T. ; Warner, J. C. Green Chemistry, Theory and Practice, Oxford University press, Oxford, 1998. [Google Scholar]
  • 4. Noyori, R. ; Aoki, M. ; Sato, K. J. Chem. Soc., Chem. Commun. 2003, 1977–1986. [DOI] [PubMed]
  • 5. Simandi L. L.; Ed, Advances in Catalytic Activation of Dioxygen by Metal Complexes, Kulwer Academic, Dordrecht, 1992. [Google Scholar]
  • 6. Costas, M. ; Mehn, M. P. ; Hensen, M. P. ; Que, L, Jr. Chem. Rev. 2004, 104, 939. [DOI] [PubMed] [Google Scholar]
  • 7. Weissermel, K. ; Arpe, H. J. Industrial Organic Chemistry, VCH, Weinheim, 1993. [Google Scholar]
  • 8. Pandiarajan, K. In Synthetic Reagents, Pizey J. S. Ed., Horwood‐Wiley, New York, NY, 1985, Vol 6, pp 60. [Google Scholar]
  • 9. Weselsky, P. Ber. 1871, 4, 613. [Google Scholar]
  • 10. Katrizky, A.R. Chemistry of Heterocyclic N‐oxides, Academic Press, New York, 1971. [Google Scholar]
  • 11.a Albini, A. ; Pietra, S. Heterocyclic N‐oxides, CRC Press, Boca Ranton, 1991b) [Google Scholar]; Albini, A. Synthesis, 1991, 263.
  • 12. Balazarini, J. ; Stevens, M. ; De Clercq, E. ; Scols, D. ; Pannecouque, C. ; J. Antimicrob. Chemother. 2005, 55 135, [DOI] [PubMed] [Google Scholar]; Biochem pharma, 2006, 71, 1122. [Google Scholar]
  • 13. Balazarini, J. ; Keyaerts, E. ; Vijgen, L. ; Vandermeer, F. ; Stevens, M. ; Clercq, E. D. ; Egberink, H. ; Ranst, M. V. J. Antimicrob. Chemother. 2006, 57, 472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Oconnor, C. J. ; Sinn, E. ; Carlin, R.L. Inorg Chem. 1977, 16, 3314. [Google Scholar]
  • 15. Roseky, H. W. ; Andruh, M. Coord Chem Rev. 2003, 236, 91. [Google Scholar]
  • 16.a Palucki, M. ; McCormick, G. J. ; Jacobsen, E. N. Tetrahedron Lett. 1995, 36, 5457. [Google Scholar]; b Samsel, G. E. ; Srinivasan, K. ; Kochi, J. K. J. Am. Chem. Soc. 1985, 107, 7606. [Google Scholar]; c Finney, N. S. ; Pospisil, P. J. ; Chang, S. ; Palucki, M. ; Konsler, R. G. ; Hansen, B. ; Jacobsen, E. N. Angew. Chem Int. Ed. 1997, 36, 1720. [Google Scholar]; d Berkessel, A. ; Fraunekron, M. J. Chem. Soc. Perkin Trans.1 1997, 2265. ; e Huges, L. ; Smith, G. B. ; Liu, J. ; Dezeny, G. C. ; Senanayake, C. H. ; Larsen, R. D. ; Verhoeven, T. R. ; Reider, P. J. J. Org Chem., 1997, 62, 2222 [DOI] [PubMed] [Google Scholar]
  • 17. Kilenyi, S. N. , In Comprehensive Organic Synthesis, Ley S. V. Ed., Pergamon Press, Oxford, 1991, Vol 8, pp 661–663. [Google Scholar]
  • 18. Schrock, R. R. Chem Rev, 2002, 102, 145. [DOI] [PubMed] [Google Scholar]
  • 19. Basuli, F. ; Bailey, B. C. ; Tomaszewski, J. ; Huffman, J. C. ; Mindiola, D. J. J. Am. Chem. Soc., 2003, 125, 6052. [DOI] [PubMed] [Google Scholar]
  • 20.a Cummins, C. C. ; Schock, R. R. ; Davis, W. M. Inorg Chem. 1994, 33, 1448. [Google Scholar]; b Mullins, S. M. ; Ducan, A. P. ; Bergman, R. G. ; Arnold, J. Inorg Chem. 2001, 40, 6952. [DOI] [PubMed] [Google Scholar]; c Sung K. M.; Holm, R. H. J. Am. Chem. Soc. 2001, 123, 1931. [DOI] [PubMed] [Google Scholar]
  • 21. Arney, D. S. J. ; Burns, C. J. J. Am. Chem. Soc. 1995, 117, 9448. [Google Scholar]
  • 22.a Schneider, W. P. ; Mclintosh, A. V. (upjohn) US Patent 2,769,824,1956;; Chem. Abstr. 1957s, 51, 8822e. [Google Scholar]; b Rheeneen, V. V. ; Kelly, R. C. ; Cha, D. Y. ; Tetrahedron Lett. 1976, 17, 1973. [Google Scholar]; c Day, R. ; Matteson, D. Tetrahedron Lett. 1980, 21, 449. [Google Scholar]
  • 23. Ullmann's Encyclopedia of Industrial Chemistry on CD‐ROM, Electronic release, Wiley ‐VCH, 2002. [Google Scholar]
  • 24. Chelucci, G. ; Murineddu, G. ; Pinna, G. A. Tetrahedron Asym. 2004, 15, 1373. [Google Scholar]
  • 25. Pool, J. A. ; Scott, L. ; Kiplinger, J. L. J. Am. Chem. Soc. 2005, 127, 1338. [DOI] [PubMed] [Google Scholar]
  • 26. Gonzalez, R. L. M. ; de Villa, A. L. P. ; Montes de C. C.; Gelbard, G. React. Funct. Polym. 2005, 65, 169. [Google Scholar]
  • 27. Perni, R. B. ; Kowalczyk, P. J. ; Treasurywala, A. M. ; Tetrahedron Lett. 1995, 36, 699. [Google Scholar]
  • 28. Soscun, H. ; Castellano, O. ; Bermudez, Y. ; Mendoza, C. T. ; Marcano, A. ; Alvarado, J. J. Mol. Stru. (Theochem). 2002, 592, 19. [Google Scholar]
  • 29. Prezhdo, V. V. ; Vaschenko, E. V. ; Prezhdo, O. V. ; Puszko, A. J. Mol. Stru. 1998, 47, 127. [Google Scholar]
  • 30. Dr. Proctor , The Worlds Best Products at the Worlds Best Prices (online).
  • 31. Seiborg, K. ; Wgheire, G. ; Landberg, H. Helv. Chim. Acta. 1969, 52, 789. [Google Scholar]
  • 32. Evleth, E. Theor. Chim. Acta. 1968, 11, 145. [Google Scholar]
  • 33. Kulkarni, G. V. ; Ray, A. J. Mol. Struct. 1981, 71, 253. [Google Scholar]
  • 34. Cigniti, M. ; Gata, F. Spectrochim. Acta, Part A. 1985, 41 1287. [Google Scholar]
  • 35. Lutz, B. ; Vander Mass, J. H. ; Kanthers, J. A. J. Mol. Stru. 1994, 325, 203.; [Google Scholar]; Chem. Abstr. 1995, 122, 133512c. [Google Scholar]
  • 36. Kunts, S. ; Agren.; H. ; Minaev, B. F. Thoechem. 1994, 117, 185; [Google Scholar]; Chem. Abstr. 1994, 121, 178999n. [Google Scholar]
  • 37. Taylor, R. ; Kennard, O. J. Am. Chem. Soc. 1982, 104, 5063. [Google Scholar]
  • 38. Mayazaki, H. ; Kubota, T. Bull. Chem. Soc. Jpn. 1977, 45, 78. [Google Scholar]
  • 39. Maciel, G. E. ; McIver, J. W. ; Ostund, N. S. ; Pope, J. A. J. Am. Chem. Soc. 1970, 92, 4497. [Google Scholar]
  • 40. Maciel, G. E. ; McIver, J. W. ; Ostund, N. S. ; Pope, J. A. J. Am. Chem. Soc. 1970, 92, 4506. [Google Scholar]
  • 41. Ernst, L. ; Lincoln, D. N. ; Wary, V. J. Magn. Resonance. 1976, 21, 115. [Google Scholar]
  • 42. Contreras, R. H. ; Kowalewski, V. J. J. Magn. Resonance. 1980, 39, 291. [Google Scholar]
  • 43. Yamanaka, H. ; Sakamoto, T. ; Niitsuma, S. Heterocycles. 1990, 31, 923. [Google Scholar]
  • 44. Yamanaka, H. Heterocycles. 1992, 33, 3. [Google Scholar]
  • 45. Kurasawa, Y. ; Takada, A. ; Kim, H. S. J. Heterocycl. Chem. 1995, 32, 1085. [Google Scholar]
  • 46. Youssif, S. ARKIVOC. 2001, i, 242, and the references there in. [Google Scholar]
  • 47. Hartley, F. R. ; Supported Metal Complexes, D. Reidel Publishing Company, 1985, pp 1–26. [Google Scholar]
  • 48. Hodge. P. ; Sherrington, D. C. Synthesis and Sepration Using Functionalised Polymers, John Wiley & Sons, New York, NY, 1998. [Google Scholar]
  • 49.a Boekelheide, V. ; Linn. W. V. J. Am. Chem. Soc. 1954, 76, 1286. [Google Scholar]; b Brougham, Copper, M. S. ; Cummerson, D. A. ; Heaney, H. ; Thompson, N. Synthesis 1987, 1015. ; c Murray, R. W. ; Jeyaraman, R. J. Org. C/hem. 1985, 50, 2847. [Google Scholar]; d Ferrer, M. ; Sanchez‐Baeza, F. ; Messanguer, A. ; Tetrahedron. 1997, 53, 1587. [Google Scholar]
  • 50.a Sheldon, R. A. Chemtech. 1994, 38. ; b Anastas, P. T. ; Warner, J. C. Green Chemistry: Theory and Practice, Oxford University Press, Oxford, 1998. [Google Scholar]; c Clark, J. H. Green Chem. 1999, 1, 1. [Google Scholar]; d De Vos, D. E. ; Sels, B. F. ; Jacobs, R. A. Adv Catal, 2001, 46, 1. [Google Scholar]; e Sheldon, R. A. J. Chem. Tech. Biotechnol, 1997, 68, 381. [Google Scholar]
  • 51.a Nisiyama, Y. ; Nakagawa, Y ; Mizuno, N. Angew. Chem. Int. Eds. 2001, 40, 639. [DOI] [PubMed] [Google Scholar]; b Thomas, J. M. ; Raja, R. ; Sankar, G ; Bell, R. G. Acc. Chem. Res. 2001, 34, 191. [DOI] [PubMed] [Google Scholar]; c Dobler, C. ; Mehltretter, G. M. ; Sundermeier, U. ; Beller, M. J. Am. Chem. Soc. 2001, 122, 10289. [Google Scholar]; d Groves, J. T. ; Quinn, R. J. Am. Chem. Soc. 1985, 107, 5790. [Google Scholar]; e Davis, S. ; Drago, R. S. J. Chem. Soc., Chem. Commun. 1990, 250. ; f David, R. J. ; Pugsley, S. J. ; Matthew, S. J. Am. Chem. Soc. 2001, 123, 7475. [DOI] [PubMed] [Google Scholar]; g Partenheimer, W. ; Barton, D. H. R. ; Martell, A. E. ; Sawyer, D. T. The Activation of Dioxygen and Homogeneous Catalytic Oxidation, Plenum Press, New York, NY, 1993. [Google Scholar]; h Nishiyama, Y. ; Nakagawa, Y. ; Mizuno, N. Angew. Chem. 2001, 40, 3639. [DOI] [PubMed] [Google Scholar]; i Noboyuki, K. ; Yasunari, M. ; Nishimura, T. ; Umeura, S. J. Org. chem. 2001, 66, 6620. [DOI] [PubMed] [Google Scholar]
  • 52. Coperet, C ; Adolfsson, H. ; Khunog, T. V. ; Andrei, K. ; Yudin. K. ; Sharpless, K. B. J. Org. Chem. 1998, 63, 1740. [Google Scholar]
  • 53.a Coperet, C. ; Adolfsson, H. ; Sharpless. K. B. J. Chem. Soc., Chem. Commun. 1997, 1565. ; b Rudolph, J. ; Reddy, K. L. ; Chiang, J. P. ; Sharpless, K. B. J. Am. Chem. Soc. 1997, 119, 6185. [Google Scholar]
  • 54. Coperet, C. ; Adolfsson, H. ; Chiang, J. P. ; Andrei, K. ; Yudin, K. , Sharpless. K. B. Tetrahedron Lett. 1998, 39, 761. [Google Scholar]
  • 55. Dongre, R. S. ; Roa, T. V. ; Sharma, B. K. ; Sain, B. ; Bhatia, V. K. Synth. Commun. 2001, 31 (2), 167. [Google Scholar]
  • 56. Kaneda, K. ; Haruna, S. ; Imanaka, T. ; Hamamoto, M. ; Nishiyama, Y. ; Ishii. Y. Tetrahedron Lett. 1992, 33, 6827. [Google Scholar]
  • 57. Choudary, M. ; Sudha, Y. Synth. Commun. 1996, 26, 1651. [Google Scholar]
  • 58. Rao, T. V. ; Sain, B. ; Kumar, K. ; Murthy, P. S. ; Roa, T. S. R. P. ; Joshi, G. C. Synth. Commun. 1998, 28, 319. [Google Scholar]
  • 59. Jain. S. L. ; Sain, B. ; J. Chem. Soc., Chem. Commun. 2002, 1040. [DOI] [PubMed] [Google Scholar]
  • 60. Prasad, M. R. ; Kamalakar, G. ; Madhavi, G. ; Kulkarni, S. J. ; Raghavan, K. V. J Chem Soc., Chem. Commun. 2000, 17, 1577. [Google Scholar]
  • 61. Prasad, M. R. ; Kamalakar, G. ; Madhavi, G. ; Kulkarni, S. J. ; Raghavan, K. V. J. Mol. Cata. A. 2002, 186, 109. [Google Scholar]
  • 62. Rout, L. ; Punniyamurthy, T. Adv. Synth. Cata. 2005, 347, 1958. [Google Scholar]
  • 63. Bamoharram, F. F. ; Heravi, M. M. ; Roshani, M. ; Tavakoli. J. Mol. Cata. A. 2006, 252, 219. [Google Scholar]
  • 64. Winkeljohn, W. R. ; Vasquez, P. C. ; Strekowski, L. ; Baumstark, A. L. Tetrahedron. Lett. 2004, 45, 8295. [Google Scholar]
  • 65. Dondoni, A. ; Modena, G. ; Tudesco, Gazz, P. E. Chim. Ital. 1961, 91, 613. [Google Scholar]
  • 66.a Bergstad, K. ; Backvll, J. E. J. Org. Chem. 1998, 63, 6650. [Google Scholar]; b Ball, S. ; Bruice, T. C. J. Am. Chem. Soc. 1980, 102, 6498. [Google Scholar]
  • 67. Battioni, T. K. P. ; Sanderson, W. ; Mansuy, D. Synthesis. 1997, 1387.
  • 68. Armarego, W. L. F. Stereochemistry of Heterocyclic Compounds., Part I: Nitrogen Heterocyclics, John Wiley & Sons, 1997. [Google Scholar]
  • 69. Chelucci, G. ; Murineddu, G. ; Pinna, G. A. Tetrahedron Asymmetry. 2004, 15, 1373. [Google Scholar]
  • 70. Wasserscheid T.; Welton T. Eds. Ionic Liquids in Synthesis. Wiley‐VCH Verlag‐ GmbH & Co. KGaA, 2002. [Google Scholar]
  • 71. Cornils, B. Org. Process. Res. Dev. 1998, 2, 121. [Google Scholar]
  • 72. Cornils H. B.; Herrmann W. A. Eds. Aqueous‐Phase Organometallic Catalysis‐Concepts and Applications, VCH, Weinheim, 1998. [Google Scholar]
  • 73. Wei, W.‐L. ; Zhu, H.‐Y. ; Zhao, C.‐L. ; Haung, M.‐Y. ; Jiang, Y. Y. React. Funct. Polym. 2004, 59, 33. [Google Scholar]
  • 74. Zhang, X. ; Geng, Y. ; Han, B. ; Huang, M.‐Y. ; Jiang, Y. Y. Polym. Adv. Technol. 2001, 12, 642. [Google Scholar]
  • 75. Haung, K. ; Xue, L. ; Hu, Y.‐C ; Huang, M.‐Y. ; Jiang, Y.‐Y. React. Funct. Polym. 2002, 50, 199. [Google Scholar]
  • 76. Quignard, F. ; Choplin, A. ; Domard, A. Langmuir, 2000, 16, 9106. [Google Scholar]
  • 77. Reddy, K. R. ; Kumar, N. S. ; Reddy, P. S. ; Sreedhar, B. ; Kantam, M. L. J. Mol. Cata. A. 2006, 252, 12. [Google Scholar]
  • 78. Guibal, E. Prog. Polym. Sci. 2005, 30, 71. [Google Scholar]
  • 79. Hansch. C. ; Leo, A. Exploring QSAR Fundamentals and Application in Chemistry and Biology, ACS Professional Reference Book, American Chemical Society, Washington, D.C., 1995. [Google Scholar]
  • 80. Bromely, S. T. ; Catlow, C. R. A. ; Maschmeyer, T. Cat Tech. 2003, 7, 164. [Google Scholar]

Articles from Journal of Heterocyclic Chemistry are provided here courtesy of Wiley

RESOURCES