Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2006 Mar 1;267(6):678–695. doi: 10.1002/jmor.10430

Evolution of the middle ear apparatus in talpid moles

Matthew J Mason 1,
PMCID: PMC7166676  PMID: 16511863

Abstract

The middle ear structures of eight species of mole in the family Talpidae (Mammalia: Eulipotyphla) were studied under light and electron microscopy. Neurotrichus, Parascalops, and Condylura have a simple middle ear cavity with a loose ectotympanic bone, ossicles of a “microtype” morphology, and they retain a small tensor tympani muscle. These characteristics are ancestral for talpid moles. Talpa, Scalopus, Scapanus, and Parascaptor species, on the other hand, have a looser articulation between malleus and ectotympanic bone and a reduced or absent orbicular apophysis. These species lack a tensor tympani muscle, possess complete bullae, and extensions of the middle ear cavity pneumatize the surrounding basicranial bones. The two middle ear cavities communicate in Talpa, Scapanus, and Parascaptor species. Parascaptor has a hypertrophied malleus, a feature shared with Scaptochirus but not found in any other talpid genus. Differences in middle ear morphology within members of the Talpidae are correlated with lifestyle. The species with middle ears closer to the ancestral type spend more time above ground, where they will be exposed to high‐frequency sound: their middle ears appear suited for transmission of high frequencies. The species with derived middle ear morphologies are more exclusively subterranean. Some of the derived features of their middle ears potentially improve low‐frequency hearing, while others may reduce the transmission of bone‐conducted noise. By contrast, the unusual middle ear apparatus of Parascaptor, which exhibits striking similarities to that of golden moles, probably augments seismic sensitivity by inertial bone conduction. J. Morphol. © 2006 Wiley‐Liss, Inc.

Keywords: middle ear, fossorial, Talpidae, mole, Parascaptor, seismic sensitivity

LITERATURE CITED

  1. Abe H. 1995. Revision of the Asian moles of the genus Mogera . J Mamm Soc Jpn 20: 51–68. [Google Scholar]
  2. Aitkin LM, Horseman BG, Bush BMH. 1982. Some aspects of the auditory pathway and audition in the European mole, Talpa europæa . Brain Behav Evol 21: 49–59. [DOI] [PubMed] [Google Scholar]
  3. Bárány E. 1938. A contribution to the physiology of bone conduction. Acta Otolaryngol Suppl (Stockh) 26: 1–233. [Google Scholar]
  4. Begall S, Burda H, Schneider B. 2004. Hearing in coruros (Spalacopus cyanus): special audiogram features of a subterranean rodent. J Comp Physiol [A] 190: 963–969. [DOI] [PubMed] [Google Scholar]
  5. Bondy G. 1907. Beiträge zur Vergleichenden Anatomie des Gehörorgans der Säuger. (Tympanicum, Membrana Shrapnelli und Chordaverlauf). Anat Hefte 35: 293–408. [Google Scholar]
  6. Brückmann G, Burda H. 1997. Hearing in blind subterranean Zambian mole‐rats (Cryptomys sp.): collective behavioural audiogram in a highly social rodent. J Comp Physiol [A] 181: 83–88. [DOI] [PubMed] [Google Scholar]
  7. Bruns V, Müller M, Hofer W, Heth G, Nevo E. 1988. Inner ear structure and electrophysiological audiograms of the subterranean mole rat, Spalax ehrenbergi . Hear Res 33: 1–10. [DOI] [PubMed] [Google Scholar]
  8. Burda H. 1979. Morphology of the middle and inner ear in some species of shrews (Insectivora, Soricidae). Acta Sc Nat Brno 13: 1–46. [Google Scholar]
  9. Burda H, Müller M, Bruns V. 1988. The auditory system in subterranean mammals In: Elsner N, Barth FG, editors. Sense organs. Interfaces between environment and behaviour. Stuttgart: G. Thieme. [Google Scholar]
  10. Burda H, Bruns V, Nevo E. 1989. Middle ear and cochlear receptors in the subterranean mole‐rat, Spalax ehrenbergi . Hear Res 39: 225–230. [DOI] [PubMed] [Google Scholar]
  11. Burda H, Bruns V, Hickman GC. 1992. The ear in subterranean Insectivora and Rodentia in comparison with ground‐dwelling representatives. 1. Sound conducting system of the middle ear. J Morphol 214: 49–61. [DOI] [PubMed] [Google Scholar]
  12. Cancura W. 1980. On the statics of malleus and incus and on the function of the malleus‐incus joint. Acta Otolaryngol (Stockh) 89: 342–344. [DOI] [PubMed] [Google Scholar]
  13. Catania KC. 2000. Cortical organisation in Insectivora: the parallel evolution of the sensory periphery and the brain. Brain Behav Evol 55: 311–321. [DOI] [PubMed] [Google Scholar]
  14. Coles RB, Gower DM, Boyd PJ, Lewis DB. 1982. Acoustic transmission through the head of the common mole, Talpa europaea . J Exp Biol 101: 337–341. [DOI] [PubMed] [Google Scholar]
  15. Cranbrook Earl of. 1962. Notes on the habits and vertical distribution of some insectivores from the Burma‐Tibetan frontier. Proc Linn Soc Lond 173: 121–127. [Google Scholar]
  16. Cuvier GLCFD. 1805. Leçons d'anatomie comparée. Paris: Baudouin. [Google Scholar]
  17. Dahmann H. 1929. Zur Physiologie des Hörens; experimentelle Untersuchungen über die Mechanik der Gehörknöchelchenkette, sowie über deren Verhalten auf Ton und Luftdruck. Z Hals‐ Nasen‐ Ohrenheilkunde 24: 462–497. [Google Scholar]
  18. Dalquest WW, Orcutt DR. 1942. The biology of the least shrew‐mole, Neurotrichus gibbsii minor . Am Midl Nat 27: 387–401. [Google Scholar]
  19. Decraemer WF, Khanna SM. 1994. Modelling the malleus vibration as a rigid body motion with one rotational and one translational degree of freedom. Hear Res 72: 1–18. [DOI] [PubMed] [Google Scholar]
  20. Decraemer WF, Khanna SM, Funnell WRJ. 1991. Malleus vibration mode changes with frequency. Hear Res 54: 305–318. [DOI] [PubMed] [Google Scholar]
  21. Decraemer WF, Khanna SM, Funnell WRJ. 1994. A method for determining three‐dimensional vibration in the ear. Hear Res 77: 19–37. [DOI] [PubMed] [Google Scholar]
  22. Dirckx JJJ, Decraemer WF, von Unge M, Larsson C. 1998. Volume displacement of the gerbil eardrum pars flaccida as a function of middle ear pressure. Hear Res 118: 35–46. [DOI] [PubMed] [Google Scholar]
  23. Doran AHG. 1878. Morphology of the mammalian ossicula auditûs. Trans Linn Soc Lond, 2nd ser 1: 371–497. [Google Scholar]
  24. Fleischer G. 1978. Evolutionary principles of the mammalian middle ear. Adv Anat Embryol Cell Biol 55: 1–70. [DOI] [PubMed] [Google Scholar]
  25. Gaughran GRL. 1954. A comparative study of the osteology and myology of the cranial and cervical regions of the shrew Blarina and the mole Scalopus . Misc Pub Mus Zool Univ Mich 80: 1–82. [Google Scholar]
  26. Graves GR. 2002. Crepuscular surface foraging of the hairy‐tailed mole (Parascalops breweri). J N C Acad Sci 118: 206–209. [Google Scholar]
  27. Grenyer R, Purvis A. 2003. A composite species‐level phylogeny of the 'Insectivora' (Mammalia: Order Lipotyphla Haeckel, 1866). J Zool 260: 245–257. [Google Scholar]
  28. Grulich I. 1982. Zur Kenntnis der Gattungen Scaptochirus und Parascaptor (Talpini, Mammalia). Folia Zool 31: 1–20. [Google Scholar]
  29. Hamilton WJ. 1939. Activity of Brewer's mole (Parascalops breweri). J Mammal 20: 307–310. [Google Scholar]
  30. Heffner RS, Heffner HE. 1990. Vestigial hearing in a fossorial mammal, the pocket gopher (Geomys bursarius). Hear Res 46: 239–252. [DOI] [PubMed] [Google Scholar]
  31. Heffner RS, Heffner HE. 1992a. Evolution of sound localization in mammals In: Webster DB, Fay RR, Popper AN, editors. The evolutionary biology of hearing. New York: Springer; p 691–715. [Google Scholar]
  32. Heffner RS, Heffner HE. 1992b. Hearing and localization in blind mole rats (Spalax ehrenbergi). Hear Res 62: 206–216. [DOI] [PubMed] [Google Scholar]
  33. Heffner RS, Heffner HE. 1993. Degenerate hearing and sound localization in naked mole rats (Heterocephalus glaber), with an overview of central auditory structures. J Comp Neurol 331: 418–433. [DOI] [PubMed] [Google Scholar]
  34. Heffner HE, Ravizza RJ, Masterton B. 1969. Hearing in primitive mammals. III. Tree shrew (Tupaia glis). J Aud Res 9: 12–18. [Google Scholar]
  35. Heffner RS, Heffner HE, Contos C, Kearns D. 1994. Hearing in prairie dogs: transition between surface and subterranean rodents. Hear Res 73: 185–189. [DOI] [PubMed] [Google Scholar]
  36. Heffner RS, Koay G, Heffner HE. 2001. Audiograms of five species of rodents: implications for the evolution of hearing and the perception of pitch. Hear Res 157: 138–152. [DOI] [PubMed] [Google Scholar]
  37. Hellström S, Stenfors L‐E. 1983. The pressure equilibrating function of pars flaccida in middle ear mechanics. Acta Physiol Scand 118: 337–341. [DOI] [PubMed] [Google Scholar]
  38. Hemilä S, Nummela S, Reuter T. 1995. What middle ear parameters tell about impedance matching and high frequency hearing. Hear Res 85: 31–44. [DOI] [PubMed] [Google Scholar]
  39. Henson OW. 1961. Some morphological and functional aspects of certain structures of the middle ear in bats and insectivores. Univ Kansas Sci Bull 42: 151–255. [Google Scholar]
  40. Heth G, Frankenberg E, Nevo E. 1986. Adaptive optimal sound for vocal communication in tunnels of a subterranean mammal (Spalax ehrenbergi). Experientia 42: 1287–1289. [DOI] [PubMed] [Google Scholar]
  41. Hüttenbrink KB. 1988. The mechanics of the middle‐ear at static air pressures: the role of the ossicular joints, the function of the middle‐ear muscles and the behaviour of stapedial prostheses. Acta Otolaryngol Suppl (Stockh) 451: 1–35. [DOI] [PubMed] [Google Scholar]
  42. Hutterer R. 1993. Order Insectivora In: Wilson DE, Reeder DM, editors. Mammal species of the world: a taxonomic and geographic reference. Washington, DC: Smithsonian Institution Press; p 69–130. [Google Scholar]
  43. Hyrtl J. 1845. Vergleichend‐anatomische Untersuchungen über das innere Gehörorgan des Menschen und der Säugethiere. Prague: Verlag von Friedrich Ehrlich. [Google Scholar]
  44. Khanna SM, Tonndorf J. 1972. Tympanic membrane vibrations in cats studied by time‐averaged holography. J Acoust Soc Am 51: 1904–1920. [DOI] [PubMed] [Google Scholar]
  45. Kimchi T, Reshef M, Terkel J. 2005. Evidence for the use of reflected self‐generated seismic waves for spatial orientation in a blind subterranean mammal. J Exp Biol 208: 647–659. [DOI] [PubMed] [Google Scholar]
  46. Kohllöffel LUE. 1984. Notes on the comparative mechanics of hearing. III. On Shrapnell's membrane. Hear Res 13: 83–88. [DOI] [PubMed] [Google Scholar]
  47. Konstantinov AN, Movchan VN, Shibkov AA. 1987. Functional properties of the auditory system and acoustic signalling in insectivores. J Evol Biochem Physiol 23: 321–328. [Google Scholar]
  48. Kudo M, Nakamura Y, Tokuno H, Kitao Y. 1990. Auditory brainstem in the mole (Mogera): nuclear configurations and the projections to the inferior colliculus. J Comp Neurol 298: 400–412. [DOI] [PubMed] [Google Scholar]
  49. Lange S, Stalleicken J, Burda H. 2004. Functional morphology of the ear in fossorial rodents, Microtus arvalis and Arvicola terrestris . J Morphol 262: 770–779. [DOI] [PubMed] [Google Scholar]
  50. Lay DM. 1972. The anatomy, physiology, functional significance and evolution of specialised hearing organs of gerbilline rodents. J Morphol 138: 41–120. [DOI] [PubMed] [Google Scholar]
  51. Lombard RE, Hetherington TE. 1993. Structural basis of hearing and sound transmission In: Hanken JH BK, editor. The skull. Chicago: University of Chicago Press; p 241–302. [Google Scholar]
  52. MacPhee RDE, Novacek MJ, Storch G. 1988. Basicranial morphology of early Tertiary erinaceomorphs and the origin of primates. Am Mus Novitates 2921: 1–42. [Google Scholar]
  53. Mason MJ. 1999. The functional anatomy of the middle ear of mammals, with an emphasis on fossorial forms. PhD thesis. Cambridge, UK: University of Cambridge.
  54. Mason MJ. 2001. Middle ear structures in fossorial mammals: a comparison with non‐fossorial species. J Zool 255: 467–486. [Google Scholar]
  55. Mason MJ. 2003a. Bone conduction and seismic sensitivity in golden moles (Chrysochloridae). J Zool 260: 405–413. [Google Scholar]
  56. Mason MJ. 2003b. Morphology of the middle ear of golden moles (Chrysochloridae). J Zool 260: 391–403. [Google Scholar]
  57. Mason MJ. 2004a. Functional morphology of the middle ear in Chlorotalpa golden moles (Mammalia, Chrysochloridae): predictions from three models. J Morphol 261: 162–174. [DOI] [PubMed] [Google Scholar]
  58. Mason MJ. 2004b. The middle ear apparatus of the tuco‐tuco Ctenomys sociabilis (Rodentia, Ctenomyidae). J Mammal 85: 797–805. [Google Scholar]
  59. Mason MJ, Narins PM. 2001. Seismic signal use by fossorial mammals. Am Zool 41: 1171–1184. [Google Scholar]
  60. McDowell SB. 1958. The Greater Antillian insectivores. Bull Am Mus Nat Hist 115: 113–214. [Google Scholar]
  61. Møller AR. 1974. The acoustic middle ear muscle reflex In: Keidel WD, Neff WD, editors. Handbook of sensory physiology, vol. V/1 Auditory system. Berlin: Springer; p 519–548. [Google Scholar]
  62. Motokawa M. 2004. Phylogenetic relationships within the family Talpidae (Mammalia: Insectivora). J Zool 263: 147–157. [Google Scholar]
  63. Müller M, Burda H. 1989. Restricted hearing range in a subterranean rodent, Cryptomys hottentotus . Naturwissenschaften 76: 134–135. [DOI] [PubMed] [Google Scholar]
  64. Murata K, Ito S, Horikawa J, Minami S. 1986. The acoustic middle ear muscle reflex in albino rats. Hear Res 23: 169–183. [DOI] [PubMed] [Google Scholar]
  65. Nakajima HH, Ravicz ME, Merchant SN, Peake WT, Rosowski JJ. 2005. Experimental ossicular fixations and the middle ear's response to sound: evidence for a flexible ossicular chain. Hear Res 204: 60–77. [DOI] [PubMed] [Google Scholar]
  66. Narins PM, Lewis ER, Jarvis JUM, O'Riain J. 1997. The use of seismic signals by fossorial southern African mammals: a neuroethological gold mine. Brain Res Bull 44: 641–646. [DOI] [PubMed] [Google Scholar]
  67. Novacek MJ. 1977. Aspects of the problem of variation, origin and evolution of the eutherian auditory bulla. Mammal Rev 7: 131–149. [Google Scholar]
  68. Nummela S. 1995. Scaling of the mammalian middle ear. Hear Res 85: 18–30. [DOI] [PubMed] [Google Scholar]
  69. Overstreet EH, Ruggero MA. 2001. Development of wide‐band middle ear transmission in the Mongolian gerbil. J Acoust Soc Am 111: 261–270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Packer DJ. 1987. The influence of carotid arterial sounds on hearing sensitivity in mammals. J Zool 211: 547–560. [Google Scholar]
  71. Pang XD, Peake WT. 1986. How do contractions of the stapedius muscle alter the acoustic properties of the ear? In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A, editors. Peripheral auditory mechanisms. New York: Springer; p 36–43. [Google Scholar]
  72. Platzer W. 1961. Die Ossicula auditus von Talpa europea . Anat Anz 109: 130–136. [PubMed] [Google Scholar]
  73. Pye A. 1972. Variations in the structure of the ear in the different mammalian species. Sound 6: 14–18. [Google Scholar]
  74. Pye A, Hinchcliffe R. 1968. Structural variations in the mammalian middle ear. Med Biol Illus 18: 122–127. [PubMed] [Google Scholar]
  75. Relkin EM. 1988. Introduction to the analysis of middle‐ear function In: Jahn AF, Santos‐Sacchi J, editors. Physiology of the ear. New York: Raven Press; p 103–123. [Google Scholar]
  76. Rosowski JJ, Lee C‐Y. 2002. The effect of immobilizing the gerbil's pars flaccida on the middle‐ear's response to static pressure. Hear Res 174: 183–195. [DOI] [PubMed] [Google Scholar]
  77. Schleich CE, Busch C. 2004. Functional morphology of the middle ear of Ctenomys talarum (Rodentia: Octodontidae). J Mammal 85: 290–295. [Google Scholar]
  78. Segall W. 1970. Morphological parallelisms of bulla and auditory ossicles in some insectivores and marsupials. Fieldiana Zool 51: 169–205. [Google Scholar]
  79. Segall W. 1973. Characteristics of the ear, especially the middle ear, in fossorial mammals, compared to those in the Manidae. Acta Anat (Basel) 86: 96–110. [DOI] [PubMed] [Google Scholar]
  80. Segall W. 1976. Further observations on the ear in fossorial mammals with special consideration of Chlamyphorus truncatus (Harlan). Acta Anat (Basel) 94: 431–444. [DOI] [PubMed] [Google Scholar]
  81. Shinohara A, Campbell KL, Suzuki H. 2003. Molecular phylogenetic relationships of moles, shrew moles, and desmans from the New and Old Worlds. Mol Phylogenet Evol 27: 247–258. [DOI] [PubMed] [Google Scholar]
  82. Shinohara A, Suzuki H, Tsuchiya K, Zhang YP, Luo J, Jiang XL, Wang YX, Campbell KL. 2004. Evolution and biogeography of talpid moles from continental East Asia and the Japanese islands inferred from mitochondrial and nuclear gene sequences. Zool Sci 21: 1177–1185. [DOI] [PubMed] [Google Scholar]
  83. Simonetta A. 1957. Anatomia e significato morfologico e sistematico dell'orecchio medio e delle strutture ad esso connesse in alcuni insettivori (Suncus, Talpa, Chrysochloris). Arch Ital Anat Embriol 62: 55–94. [PubMed] [Google Scholar]
  84. Stroganov SU. 1945. Morphological characters of the auditory ossicles of Recent Talpidae. J Mammal 26: 412–420. [PubMed] [Google Scholar]
  85. Tonndorf J. 1972. Bone conduction In: Tobias JV, editor. Foundations of modern auditory theory. London: Academic Press; p 197–237. [Google Scholar]
  86. Van der Klaauw CJ. 1931. The auditory bulla in some fossil mammals, with a general introduction to this region of the skull. Bull Am Mus Nat Hist 62: 1–352. [Google Scholar]
  87. Van Kampen PN. 1905. Die Tympanalgegend des Säugetierschädels. Gegenbaurs Morphol Jahrb 34: 321–722. [Google Scholar]
  88. von Mayer A, O'Brien G, Sarmiento EE. 1995. Functional and systematic implications of the ear in golden moles (Chrysochloridae). J Zool 236: 417–430. [Google Scholar]
  89. Webster DB. 1966. Ear structure and function in modern mammals. Am Zool 6: 451–466. [DOI] [PubMed] [Google Scholar]
  90. Webster DB, Webster M. 1975. Auditory systems of Heteromyidae: functional morphology and evolution of the middle ear. J Morphol 146: 343–376. [DOI] [PubMed] [Google Scholar]
  91. Webster DB, Webster M. 1984. The specialized auditory system of kangaroo rats In: Neff WD, editor. Contributions to sensory physiology, vol. 8 Orlando, FL: Academic Press; p 161–196. [Google Scholar]
  92. Wever EG, Lawrence M. 1954. Physiological acoustics. Princeton, NJ: Princeton University Press. [Google Scholar]
  93. Whidden HP. 2000. Comparative myology of moles and the phylogeny of the Talpidae (Mammalia, Lipotyphla). Am Mus Novitates 3294: 1–53. [Google Scholar]
  94. Wilkie HC. 1925. The auditory apparatus of the common mole, Talpa europæa . Proc Zool Soc Lond 1925: 1281–1292. [Google Scholar]
  95. Wilkie HC. 1929. The attachments of the auditory ossicles of the common mole (Talpa europæa). Proc Zool Soc Lond 1929: 61–65. [Google Scholar]
  96. Yates TL, Moore DW. 1990. Speciation and evolution in the family Talpidae (Mammalia: Insectivora) In: Nevo E, Reig OA, editors. Evolution of subterranean mammals at the organismal and molecular levels. New York: Wiley‐Liss; p 1–22. [PubMed] [Google Scholar]
  97. Zeller UA. 1986. Ontogeny and cranial morphology of the tympanic region of the Tupaiidae, with special reference to Ptilocercus . Folia Primatol (Basel) 47: 61–80. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Morphology are provided here courtesy of Wiley

RESOURCES