Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2007 Aug 17;79(10):1431–1439. doi: 10.1002/jmv.20953

The membrane protein of SARS‐CoV suppresses NF‐κB activation

Xiaonan Fang 1, Jinrong Gao 1,2, Hong Zheng 1, Baozong Li 1, Lingbao Kong 1, Yijuan Zhang 1, Wei Wang 1, Yingchun Zeng 1, Linbai Ye 1,
PMCID: PMC7166727  PMID: 17705188

Abstract

Severe acute respiratory syndrome coronavirus (SARS‐CoV) infects many organs, such as lung, liver, and immune organs and causes life‐threatening atypical pneumonia, SARS causes high morbidity and mortality rates. The molecular mechanism of SARS pathogenesis remains elusive. Inflammatory stimuli can activate IκB kinase (IKK) signalsome and subsequently the nuclear factor kappa B (NF‐κB), which influences gene expression of cyclooxygenase‐2 (Cox‐2) along with other transcription factors. In this work, we found that the membrane (M) protein of SARS‐CoV physically interacted with IKKβ using a co‐immunoprecipitation assay (IPA). Expression of M suppressed tumor necrosis factor alpha (TNF‐α) induced NF‐κB activation using a luciferase reporter assay. Further investigation showed M protein suppressed Cox‐2 expression using a luciferase reporter gene assay, RT‐PCR and Western blot analysis. The carboxyl terminal of M protein was sufficient for the M protein function. Together, these results indicate that SARS‐CoV M suppresses NF‐κB activity probably through a direct interaction with IKKβ, resulting in lower Cox‐2 expression. Suppression of NF‐κB activity and Cox‐2 expression may contribute to SARS pathogenesis. J. Med. Virol. 79:1431–1439, 2007. © Wiley‐Liss, Inc.

Keywords: SARS‐CoV, membrane protein, NF‐κB, Cox‐2, IKKβ

REFERENCES

  1. Akari H, Bour S, Kao S, Adachi A, Strebel K. 2001. The human immunodeficiency virus type 1 accessory protein Vpu induces apoptosis by suppressing the nuclear factor kappaB‐dependent expression of antiapoptotic factors. J Exp Med 194: 1299–1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Appleby SB, Ristimaki A, Neilson K, Narko K, Hla T. 1994. Structure of the human cyclo‐oxygenase‐2 gene. Biochem J 302: 723–727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bour S, Perrin C, Akari H, Strebel K. 2001. The human immunodeficiency virus type 1 Vpu protein inhibits NF‐kappa B activation by interfering with beta TrCP‐mediated degradation of Ikappa B. J Biol Chem 276: 15920–15928. [DOI] [PubMed] [Google Scholar]
  4. Bowie A, Kiss‐Toth E, Symons JA, Smith GL, Dower SK, O'Neill LA. 2000. A46R and A52R from vaccinia virus are antagonists of host IL‐1 and toll‐like receptor signaling. Proc Natl Acad Sci USA 97: 10162–10167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caamano J, Hunter CA. 2002. NF‐kappaB family of transcription factors: Central regulators of innate and adaptive immune functions. Clin Microbiol Rev 15: 414–429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Caivano M, Gorgoni B, Cohen P, Poli V. 2001. The induction of cyclooxygenase‐2 mRNA in macrophages is biphasic and requires both CCAAT enhancer‐binding protein beta (C/EBP beta) and C/EBP delta transcription factors. J Biol Chem 276: 48693–48701. [DOI] [PubMed] [Google Scholar]
  7. Chen BC, Chang YS, Kang JC, Hsu MJ, Sheu JR, Chen TL, Teng CM, Lin CH. 2004. Peptidoglycan induces nuclear factor‐kappaB activation and cyclooxygenase‐2 expression via Ras, Raf‐1, and ERK in RAW 264.7 macrophages. J Biol Chem 279: 20889–20897. [DOI] [PubMed] [Google Scholar]
  8. D'Acquisto F, Iuvone T, Rombola L, Sautebin L, Di Rosa M, Carnuccio R. 1997. Involvement of NF‐kappaB in the regulation of cyclooxygenase‐2 protein expression in LPS‐stimulated J774 macrophages. FEBS Lett 418: 175–178. [DOI] [PubMed] [Google Scholar]
  9. de Haan CA, Kuo L, Masters PS, Vennema H, Rottier PJ. 1998. Coronavirus particle assembly: Primary structure requirements of the membrane protein. J Virol 72: 6838–6850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. de Haan CA, Vennema H, Rottier PJ. 2000. Assembly of the coronavirus envelope: Homotypic interactions between the M proteins. J Virol 74: 4967–4978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Berger A, Burguiere AM, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Muller S, Rickerts V, Sturmer M, Vieth S, Klenk HD, Osterhaus AD, Schmitz H, Doerr HW. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348: 1967–1976. [DOI] [PubMed] [Google Scholar]
  12. Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE. 1998. Cyclooxygenase in biology and disease. FASEB J 12: 1063–1073. [PubMed] [Google Scholar]
  13. Fang X, Ye L, Timani KA, Li S, Zen Y, Zhao M, Zheng H, Wu Z. 2005. Peptide domain involved in the interaction between membrane protein and nucleocapsid protein of SARS‐associated coronavirus. J Biochem Mol Biol 38: 381–385. [DOI] [PubMed] [Google Scholar]
  14. FitzGerald GA. 2003. COX‐2 and beyond: Approaches to prostaglandin inhibition in human disease. Nat Rev Drug Discov 2: 879–890. [DOI] [PubMed] [Google Scholar]
  15. Ghosh S, May MJ, Kopp EB. 1998. NF‐kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16: 225–260. [DOI] [PubMed] [Google Scholar]
  16. Harling‐McNabb L, Deliyannis G, Jackson DC, Gerondakis S, Grigoriadis G, Brown LE. 1999. Mice lacking the transcription factor subunit Rel can clear an influenza infection and have functional anti‐viral cytotoxic T cells but do not develop an optimal antibody response. Int Immunol 11: 1431–1439. [DOI] [PubMed] [Google Scholar]
  17. He R, Leeson A, Ballantine M, Andonov A, Baker L, Dobie F, Li Y, Bastien N, Feldmann H, Strocher U, Theriault S, Cutts T, Cao J, Booth TF, Plummer FA, Tyler S, Li X. 2004. Characterization of protein‐protein interactions between the nucleocapsid protein and membrane protein of the SARS coronavirus. Virus Res 105: 121–125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hinz B, Brune K. 2002. Cyclooxygenase‐2–10 years later. J Pharmacol Exp Ther 300: 367–375. [DOI] [PubMed] [Google Scholar]
  19. Holmes KV. 2003. SARS‐associated coronavirus. N Engl J Med 348: 1948–1951. [DOI] [PubMed] [Google Scholar]
  20. Hwang D, Jang BC, Yu G, Boudreau M. 1997. Expression of mitogen‐inducible cyclooxygenase induced by lipopolysaccharide: Mediation through both mitogen‐activated protein kinase and NF‐kappaB signaling pathways in macrophages. Biochem Pharmacol 54: 87–96. [DOI] [PubMed] [Google Scholar]
  21. Janelle ME, Gravel A, Gosselin J, Tremblay MJ, Flamand L. 2002. Activation of monocyte cyclooxygenase‐2 gene expression by human herpesvirus 6. Role for cyclic AMP‐responsive element‐binding protein and activator protein‐1. J Biol Chem 277: 30665–30674. [DOI] [PubMed] [Google Scholar]
  22. Jang BC, Kim DH, Park JW, Kwon TK, Kim SP, Song DK, Park JG, Bae JH, Mun KC, Baek WK, Suh MH, Hla T, Suh SI. 2004. Induction of cyclooxygenase‐2 in macrophages by catalase: Role of NF‐kappaB and PI3K signaling pathways. Biochem Biophys Res Commun 316: 398–406. [DOI] [PubMed] [Google Scholar]
  23. Karin M, Ben‐Neriah Y. 2000. Phosphorylation meets ubiquitination: The control of NF‐[kappa]B activity. Annu Rev Immunol 18: 621–663. [DOI] [PubMed] [Google Scholar]
  24. Kontgen F, Grumont RJ, Strasser A, Metcalf D, Li R, Tarlinton D, Gerondakis S. 1995. Mice lacking the c‐rel proto‐oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and interleukin‐2 expression. Genes Dev 9: 1965–1977. [DOI] [PubMed] [Google Scholar]
  25. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348: 1953–1966. [DOI] [PubMed] [Google Scholar]
  26. Lee N, Hui D, Wu A, Chan P, Cameron P, Joynt GM, Ahuja A, Yung MY, Leung CB, To KF, Lui SF, Szeto CC, Chung S, Sung JJ. 2003. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 348: 1986–1994. [DOI] [PubMed] [Google Scholar]
  27. Li ZW, Chu W, Hu Y, Delhase M, Deerinck T, Ellisman M, Johnson R, Karin M. 1999. The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J Exp Med 189: 1839–1845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Locker JK, Rose JK, Horzinek MC, Rottier PJ. 1992. Membrane assembly of the triple‐spanning coronavirus M protein. Individual transmembrane domains show preferred orientation. J Biol Chem 267: 21911–21918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Oie KL, Pickup DJ. 2001. Cowpox virus and other members of the orthopoxvirus genus interfere with the regulation of NF‐kappaB activation. Virology 288: 175–187. [DOI] [PubMed] [Google Scholar]
  30. Parente L, Perretti M. 2003. Advances in the pathophysiology of constitutive and inducible cyclooxygenases: Two enzymes in the spotlight. Biochem Pharmacol 65: 153–159. [DOI] [PubMed] [Google Scholar]
  31. Peiris JS, Yuen KY, Osterhaus AD, Stohr K. 2003. The severe acute respiratory syndrome. N Engl J Med 349: 2431–2441. [DOI] [PubMed] [Google Scholar]
  32. Revilla Y, Callejo M, Rodriguez JM, Culebras E, Nogal ML, Salas ML, Vinuela E, Fresno M. 1998. Inhibition of nuclear factor kappaB activation by a virus‐encoded IkappaB‐like protein. J Biol Chem 273: 5405–5411. [DOI] [PubMed] [Google Scholar]
  33. Rudolph D, Yeh WC, Wakeham A, Rudolph B, Nallainathan D, Potter J, Elia AJ, Mak TW. 2000. Severe liver degeneration and lack of NF‐kappaB activation in NEMO/IKKgamma‐deficient mice. Genes Dev 14: 854–862. [PMC free article] [PubMed] [Google Scholar]
  34. Sadikot RT, Han W, Everhart MB, Zoia O, Peebles RS, Jansen ED, Yull FE, Christman JW, Blackwell TS. 2003. Selective I kappa B kinase expression in airway epithelium generates neutrophilic lung inflammation. J Immunol 170: 1091–1098. [DOI] [PubMed] [Google Scholar]
  35. Savard M, Belanger C, Tremblay MJ, Dumais N, Flamand L, Borgeat P, Gosselin J. 2000. EBV suppresses prostaglandin E2 biosynthesis in human monocytes. J Immunol 164: 6467–6473. [DOI] [PubMed] [Google Scholar]
  36. Sha WC, Liou HC, Tuomanen EI, Baltimore D. 1995. Targeted disruption of the p50 subunit of NF‐kappa B leads to multifocal defects in immune responses. Cell 80: 321–330. [DOI] [PubMed] [Google Scholar]
  37. Shaftel SS, Olschowka JA, Hurley SD, Moore AH, O'Banion MK. 2003. COX‐3: A splice variant of cyclooxygenase‐1 in mouse neural tissue and cells. Brain Res Mol Brain Res 119: 213–215. [DOI] [PubMed] [Google Scholar]
  38. Steer SA, Corbett JA. 2003. The role and regulation of COX‐2 during viral infection. Viral Immunol 16: 447–460. [DOI] [PubMed] [Google Scholar]
  39. Tato CM, Hunter CA. 2002. Host‐pathogen interactions: Subversion and utilization of the NF‐kappa B pathway during infection. Infect Immun 70: 3311–3317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Turini ME, DuBois RN. 2002. Cyclooxygenase‐2: A therapeutic target. Annu Rev Med 53: 35–57. [DOI] [PubMed] [Google Scholar]
  41. Williams JA, Shacter E. 1997. Regulation of macrophage cytokine production by prostaglandin E2.Distinct roles of cyclooxygenase‐1 and ‐2. J Biol Chem 272: 25693–25699. [DOI] [PubMed] [Google Scholar]
  42. Yan X, Hao Q, Mu Y, Timani KA, Ye L, Zhu Y, Wu J. 2006. Nucleocapsid protein of SARS‐CoV activates the expression of cyclooxygenase‐2 by binding directly to regulatory elements for nuclear factor‐kappa B and CCAAT/enhancer binding protein. Int J Biochem Cell Biol 38: 1417–1428. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  43. Zhu H, Cong JP, Yu D, Bresnahan WA, Shenk TE. 2002. Inhibition of cyclooxygenase 2 blocks human cytomegalovirus replication. Proc Natl Acad Sci USA 99: 3932–3937. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Medical Virology are provided here courtesy of Wiley

RESOURCES