Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2004 Oct 13;74(4):589–596. doi: 10.1002/jmv.20218

Sensitive and specific detection of strains of Japanese encephalitis virus using a one‐step TaqMan RT‐PCR technique

Jau‐Ling Huang 1,2,, Hui‐Tsu Lin 1, Yu‐Ming Wang 1, Ming‐Hui Weng 1, Da‐Der Ji 1, Ming‐Der Kuo 1, Huan‐Wun Liu 1, Chang‐Shen Lin 3
PMCID: PMC7166820  PMID: 15484282

Abstract

A rapid, sensitive, and accurate laboratory diagnostic test is needed for distinguishing Japanese encephalitis virus (JEV) from other diseases featuring similar clinical symptoms and also for preventing potential outbreaks. In this study, a TaqMan reverse transcription (RT)‐polymerase chain reaction (PCR) assay was developed for rapid detection and quantification of the viral RNA of various JEV strains. A consensus JEV NS3 region was chosen to design the primers and the TaqMan probe. The JEV TaqMan assay used the EZ‐rTtH RT‐PCR system featuring advantages such as a one‐step, high‐temperature RT reaction modality and preventing carry‐over contamination. The sensitivity of the JEV TaqMan assay for detecting in vitro‐transcribed JEV NS3 RNA was estimated to be one to five copies of RNA per reaction. For cultured JE virions, less than 40 plaque forming unit (PFU)/ml of virus load (corresponding to 0.07 PFU/test) could be detected. In addition, the JEV TaqMan assay could detect all seven strains of JEV tested, but provided negative results for nine other flaviviruses and encephalitis viruses tested. The JEV TaqMan assay demonstrated greater sensitivity and specificity than traditional RT‐PCR methods as has been previously reported. The application of the JEV TaqMan assay herein has been shown to the sensitive detection of the JEV from both mosquito pools and also JEV‐spiking human blood. The assay should be of use in diagnostic laboratory conduct and could be used to replace or complement time‐consuming viral‐culture methods, thus achieving more rapid, sensitive, and highly specific identification of JEV infection. J. Med. Virol. 74:589–596, 2004. © 2004 Wiley‐Liss, Inc.

Keywords: JEV, NS3, TaqMan assay, real‐time PCR, encephalitis, flavivirus

REFERENCES

  1. Beaty BJ, Calisher CH, Shope RS. 1989. Arboviruses In: Schmidt NJ, Emmons RW, editors. Diagnostics procedures for viral rickettsial and chalmydia infection. Washington: American Public Health Association; pp 797–856. [Google Scholar]
  2. Burke DS, Leake C. 1988. Japanese encephalitis In: Monath T, editor. The arboviruses: Epidemiology and ecology, Vol. 3 Boca Raton: CRC Press; pp 63–92. [Google Scholar]
  3. Bustin SA. 2000. Absolute quantification of mRNA using real‐time reverse transcription polymerase chain reaction assay. J Mol Endocrinol 25: 169–193. [DOI] [PubMed] [Google Scholar]
  4. Chambers TJ, Hahn CS, Galler R, Rice CM. 1990. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44: 649–688. [DOI] [PubMed] [Google Scholar]
  5. Chen WR, Rico‐Hesse R, Tesh RB. 1992. A new genotype of Japanese encephalitis virus from Indonesia. Am J Trop Med Hyg 47: 61–69. [DOI] [PubMed] [Google Scholar]
  6. Chen CJ, Raung SL, Kuo MD, Wang YM. 2002. Suppression of Japanese encephalitis virus infection by non‐steroidal anti‐inflammatory drugs. J Gen Virol 83: 1897–1905. [DOI] [PubMed] [Google Scholar]
  7. Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS, Ksiazek TG, Zaki SR, Paul G, Lam SK, Tan CT. 1999. Fatal encephalitis due to Nipah virus among pig‐farmers in Malaysia. Lancet 354: 1257–1259. [DOI] [PubMed] [Google Scholar]
  8. Chua KB, Bellini WJ, Rota PA, Harcouet BH, Tamin A, Lam SK, Ksiazek TG, Rollin PE, Zaki SR, Shieh WJ, Goldsmith CS, Gubler DJ, Roehrig JT, Eaton B, Gould AR, Olson J, Field H, Daniels P, Ling AE, Peters CJ, Anderson LJ, Mahy BWJ. 2000. Nipah virus: A recently emergent dealy paramyxovirus. Science 288: 1432–1435. [DOI] [PubMed] [Google Scholar]
  9. Dennis WT, Chang GJ. 1992. Detection and identification of flaviviruses by reverse transcriptase polymerase chain reaction In: Becker Y, editor. Diagnosis of human viruses by polymerase chain reaction technology. New York: Springer‐Verlag; p 355–370. [Google Scholar]
  10. Dosten C. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348: 1967–1976. [DOI] [PubMed] [Google Scholar]
  11. Gubler DJ, Kuno G, Sather GE, Velez M, Oliver A. 1984. Mosquito cell cultures and specific monoclonal antibodies in surveillance for dengue virus. Am J Trop Med Hyg 33: 158–165. [DOI] [PubMed] [Google Scholar]
  12. Henke W, Jung M, Jung K, Lein M, Schlechte H, Berndt C, Rudolph B, Schnorr D, Loening SA. 1997. Increased analytical sensitivity of RT‐PCR of PSA mRNA decrease diagnostic specificity of detection of prostatic cells in blood. Int J Cancer 70: 52–56. [DOI] [PubMed] [Google Scholar]
  13. Kwok S, Higuchi R. 1989. Avoiding false positives with PCR. Nature 339: 237–238. [DOI] [PubMed] [Google Scholar]
  14. Lanciootti RS, Calisher CH, Gubler DJ, Chang GJ, Vorndam AV. 1992. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase polymerase chain reaction. J Clin Microbiol 30: 545–551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lanciotti R, Kerst AJ, Nasci RS, Godsey MS, Mitchell CJ, Savage HM, Komar N, Panella NA, Allen BC, Volpe KE, Davis BS, Roehrig JT. 2000. Rapid detection of West Nile virus from human clinical specimens, field‐collected mosquitoes, and avian samples by a TaqMAn reverse transcriptase‐PCR assay. J Clin Microbiol 38: 4066–4071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laue T, Emmerich P, Schmitz H. 1999. Detection of dengue virus RNA in patients after primary or secondary dengue infection by using the TaqMan automated amplification system. J Clin Microbiol 37: 2543–2547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lin YL, Liao CL, Yeh CT, Chang CH, Huang YL, Huang YY, Jan JT, Chin C, Chen LK. 1996. A highly attenuated strain of Japanese encephalitis virus induces a protective immune response in mice. Virus Res 44: 45–56. [DOI] [PubMed] [Google Scholar]
  18. Linssen B, Kinney RM, Aguilar P, Russell KL, Watts DM, Kaaden OR, Pfeffer M. 2000. Development of reverse transcription‐PCR assays specific for detection of equine encephalitis viruses. J Clin Microbiol 38: 1527–1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Livak KJ, Flood SJ, Marmaro J, Giusti W, Deetz K. 1995. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Meth Appl 4: 357–362. [DOI] [PubMed] [Google Scholar]
  20. Lyamichev V, Brow MAD, Dahlberg JE. 1993. Structure‐specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerase. Science 260: 778–783. [DOI] [PubMed] [Google Scholar]
  21. Martell M, Gomez J, Esteban JI, Sauleda S, Quer J, Cabot B, Esteban R, Guardia J. 1999. High‐throughput real‐time reverse transcriptase PCR quantitation of hepatitis C virus RNA. J Clin Microbiol 37: 327–332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Monath TP, Heinz FX. 1996. Flaviviruses, In: Field BN, Knipe DM, Howley PM, editors. Field virology, 3rd edn. Philadelphia: Lippincott‐Raven; pp 961–1034. [Google Scholar]
  23. Murakami S, Takahashi Y, Yoshida S, Fuke I, Ohmae K, Mori C, Tagagi M, Takamizawa A, Okayama H. 1994. Highly sensitive detection of viral RNA genomes in blood specimens by an optimized reverse transcription‐polymerase chain reaction. J Med Virol 43: 175–181. [DOI] [PubMed] [Google Scholar]
  24. Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, Jarvis AW, Martelli GP, Mayo MA, Summer MD. 1995. Virus taxonomy, classification and nomenclature of viruses. Arch Virol 10: 1–586. [Google Scholar]
  25. Ni H, Burns NJ, Chang GJ, Zhang MJ, Wills MR, Trent DW, Sanders PG, Barrett AD. 1994. Nucleotide and deduced amino acid sequence of the 5' noncoding region and structural protein genes of the wild‐type Japanese encephalitis virus strain SA14 and its attenuated vaccine derivatives. J Gen Virol 75: 1505–1510. [DOI] [PubMed] [Google Scholar]
  26. Nijhuis M, van Maarseveen N, Schuurman R, Verkuijlen S, de Vos M, Hendriksen K, van Loon AM. 2002. Rapid and sensitive routine detection of all members of the genus enterovirus in different clinical specimens by real‐time PCR. J Clin Microbiol 40: 3666–3670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Paranjpe S, Banerjee K. 1998. Detection of Japanese encephalitis virus by reverse transcription/polymerase chain reaction. Acta Virol 42: 5–11. [PubMed] [Google Scholar]
  28. Poon LL, Chan KH, Wong OK, Yam WC, Yuen KY, Guan Y, Lo YM, Peiris JS. 2003. Early diagnosis of SARS coronavirus infection by real time RT‐PCR. J Clin Virol 28: 233–238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rosen L. 1987. The nature history of Japanese encephalitis virus. Annu Rev Microbiol 40: 395–414. [DOI] [PubMed] [Google Scholar]
  30. Sakallah S, Bolton D, MacRae S. 2002. RNA isolated from mosquitoe pools inhibits West Nile Virus real‐time RT‐PCR: A case study using the smart cycler. Concord, NH: New Hampshire Department of Health & Human Services, Public Health Laboratories. [Google Scholar]
  31. Scaramozzino N, Crance JM, Jouan A, DeBriel DA, Stoll F, Garin D. 2001. Comparison of flavivirus universal primer pairs and development of a rapid, highly sensitive heminested reverse transcription‐PCR assay for detection of flaviviruses targeted to a conserved region of the NS5 gene sequences. J Clin Microbiol 39: 1922–1927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Solomon T, Mallewa M. 2001. Dengue and other emerging flaviviruses. J Infect 42: 104–115. [DOI] [PubMed] [Google Scholar]
  33. Solomon T, Dung NM, Kneen R, Gainsborough M, Vaughn DW, Khanh VT. 2000. Japanese encephalitis. J Neurol Neurosurg Psychiatr 68: 405–415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Solomon T, Ni H, Beasley WC, Ekkelenkamp M, Cardosa MJ, Barrett ADT. 2003. Origin and evolution of Japanese encephalitis virus in southeast Asia. J Virol 77: 3091–3098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sumiyoshi H, Mori C, Fuke I, Morita K, Suhara S, Kondou J, Kikichi Y, Nagamtu H, Igarashi A. 1987. Complete nucleotide sequence of the Japaneses encephalitis virus genome RNA. Virology 161: 497–510. [DOI] [PubMed] [Google Scholar]
  36. Sun J, Tso SJ, Chen BQ, Liu QZ. 2000. Detection of Japanese encephalitis virus in samples of JE patients by RT‐PCR. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 14: 184–187. [PubMed] [Google Scholar]
  37. Trent DW, Chang GJ. 1992. Detection and identification of flaviviruses by reverse transcriptase polymerase chain reaction In: Becker Y, Darai G, editors. Diagnosis of human viruses by polymerase chain reaction technology. Berlin: Springer‐Verlag; pp 353–370. [Google Scholar]
  38. Tsai TF. 2000. New initiatives for the control of Japanese encephalitis by vaccination minutes of a WHO/CVI meeting, Bangkok, Thailand, 13–15 October. [DOI] [PubMed]
  39. Uchil PD, Satchidanandam V. 2001. Phylogenetic analysis of Japanese encephalitis virus: Envelope gene based analysis revealed a fifth genotype, geographic clustering, and multiple introductions of the virus into the Indian subcontinent. Am J Trop Med Hyg 65: 242–251. [DOI] [PubMed] [Google Scholar]
  40. Utama A, Shimizu H, Hasebe F, Morita K, Igarashi A, Shoji I, Matsuura Y, Hatsu M, Takamizawa K, Hagiwara A, Miyamura T. 2000. Role of the DExH motif of the Japanese encephalitis virus and hepatitis C virus NS3 proteins in the ATPase and RNA helicase activities. Virology 273: 316–324. [DOI] [PubMed] [Google Scholar]
  41. van Elden LJR, Nijhuis M, Schipper P, Schuurman R, van Loon AM. 2001. Simultaneous detection of influenza viruses A and B using real‐time quantitative PCR. J Clin Microbiol 39: 196–200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wang JR, Tuan YC, Tsai HP, Yan JJ, Liu CC, Su IJ. 2002. Change of major genotype of enterovirus 71 in outbreaks of hand‐foot‐and mouth disease in Taiwan between 1998 and 2000. J Clin Microbiol 40: 5–10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Warrilow D, Northill JA, Pyke A, Smith GA. 2002. Single rapid TaqMan fluorogenic probe based PCR assay that detects all four dengue serotypes. J Clin Microbiol 66: 524–528. [DOI] [PubMed] [Google Scholar]
  44. Weng MH, Lien JC, Wang YM, Wu HL, Chin C. 1997. Susceptibility of three laboratory strains of Aedes albopictus (Diptera:Culicidae) to Japanese encephalitis virus from Taiwan. J Med Entomol 34: 745–747. [DOI] [PubMed] [Google Scholar]
  45. Westaway EG, Blok J. 1997. Taxonomy and evolutionary relationships of flaviviruses In: Gubler DJ, Kuno G, editors. Dengue and dengue hemorrahagic fever. USA: CAB International; pp 157–158. [Google Scholar]
  46. Wu YC, Huang YS, Chien LJ, Lin TL, Yueh YY, Tseng WL, Chang KJ, Wang GR. 1999. The epidemiology of Japanese encephalitis in Taiwan during 1966–1997. Am J Trop Med Hyg 61: 78–84. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Virology are provided here courtesy of Wiley

RESOURCES