Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2006 Jul 17;78(9):1232–1240. doi: 10.1002/jmv.20689

Frequent detection of human rhinoviruses, paramyxoviruses, coronaviruses, and bocavirus during acute respiratory tract infections

Katherine E Arden 1,2, Peter McErlean 1,2, Michael D Nissen 1,2,3,4, Theo P Sloots 1,2,3,4, Ian M Mackay 1,2,
PMCID: PMC7167201  PMID: 16847968

Abstract

Viruses are the major cause of pediatric acute respiratory tract infection (ARTI) and yet many suspected cases of infection remain uncharacterized. We employed 17 PCR assays and retrospectively screened 315 specimens selected by season from a predominantly pediatric hospital‐based population. Before the Brisbane respiratory virus research study commenced, one or more predominantly viral pathogens had been detected in 15.2% (n = 48) of all specimens. The Brisbane study made an additional 206 viral detections, resulting in the identification of a microbe in 67.0% of specimens. After our study, the majority of microbes detected were RNA viruses (89.9%). Overall, human rhinoviruses (HRVs) were the most frequently identified target (n = 140) followed by human adenoviruses (HAdVs; n = 25), human metapneumovirus (HMPV; n = 18), human bocavirus (HBoV; n = 15), human respiratory syncytial virus (HRSV; n = 12), human coronaviruses (HCoVs; n = 11), and human herpesvirus‐6 (n = 11). HRVs were the sole microbe detected in 37.8% (n = 31) of patients with suspected lower respiratory tract infection (LRTI). Genotyping of the HRV VP4/VP2 region resulted in a proposed subdivision of HRV type A into sublineages A1 and A2. Most of the genotyped HAdV strains were found to be type C. This study describes the high microbial burden imposed by HRVs, HMPV, HRSV, HCoVs, and the newly identified virus, HBoV on a predominantly paediatric hospital population with suspected acute respiratory tract infections and proposes a new formulation of viral targets for future diagnostic research studies. J. Med. Virol. 78:1232–1240, 2006. © 2006 Wiley‐Liss, Inc.

Keywords: virus, respiratory infection, epidemiology, RT‐PCR, diagnostics

REFERENCES

  1. Arola A, Santti J, Ruuskanen O, Halonen P, Hyypiä T. 1996. Identification of enteroviruses in clinical specimens by competitive PCR followed by genetic typing using sequence analysis. J Clin Microbiol 34: 313–318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernet C, Garret M, De Barbeyrac B, Bebear C, Bonnet J. 1989. Detection of Mycoplasma pneumoniae by using the polymerase chain reaction. J Clin Microbiol 27: 2492–2496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carrière C, Boulanger P, Delsert C. 1993. Rapid and sensitive method for the detection of B19 virus DNA using the polymerase chain reaction with nested primers. J Virol Methods 44: 221–234. [DOI] [PubMed] [Google Scholar]
  4. Coiras MT, Pérez‐Breña P, García ML, Casas I. 2003. Simultaneous detection of influenza A, B and C viruses, respiratory syncytial virus, and adenoviruses in clinical samples by multiplex reverse transcriptase nested‐PCR assay. J Med Virol 69: 132–144. [DOI] [PubMed] [Google Scholar]
  5. Corless CE, Guiver M, Borrow R, Edwards‐Jones V, Fox AJ, Kaczmarski EB, Mutton KJ. 2002. Development and evaluation of a ‘real‐time’ RT‐PCR for the detection of enterovirus and parechovirus RNA in CSF and throat swab samples. J Med Virol 67: 555–562. [DOI] [PubMed] [Google Scholar]
  6. Druce J, Tran T, Kelly H, Kaye M, Chibo D, Kostecki R, Amiri A, Catton M, Birch C. 2005. Laboratory diagnosis and surveillance of human respiratory viruses by PCR in Victoria, Australia, 2002‐2003. J Med Virol 75: 122–129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fouchier RAM, Rimmelzwaan GF, Kuiken T, Osterhaus ADME. 2005. Newer respiratory virus infections: Human metapneumovirus, avian influenza virus, and human coronaviruses. Curr Opin Infect Dis 18: 141–146. [DOI] [PubMed] [Google Scholar]
  8. Hayden FG. 2004. Rhinovirus and the lower respiratory tract. Rev Med Virol 14: 17–31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Heikkinen T, Järvinen A. 2003. The common cold. Lancet 361: 51–59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Heim A, Ebnet C, Harste G, Pring‐Åkerblom P. 2003. Rapid and quantitative detection of human adenovirus by real‐time PCR. J Med Virol 70: 228–239. [DOI] [PubMed] [Google Scholar]
  11. Hibbitts S, Rahman A, John R, Westmoreland D, Fox JD. 2003. Development and evaluation of NucliSens® basic kit NASBA for diagnosis of parainfluenza virus infection with ‘end‐point’ and ‘real‐time’ detection. J Virol Methods 108: 145–155. [DOI] [PubMed] [Google Scholar]
  12. Horwitz MS. 2001. Adenoviruses In: Knipe DM, Howley PM, editors. Fields virology, Vol. 2. Philadelphia: Lippincott Williams and Wilkins, pp 2301–2326. [Google Scholar]
  13. Hyypiä T, Puhakka T, Ruuskanen O, Mäkelä M, Arola A, Arstila P. 1998. Molecular diagnosis of human rhinovirus infections: Comparison with virus isolation. J Clin Microbiol 36: 2081–2083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ireland DC, Kent J, Nicholson KG. 1993. Improved detection of rhinoviruses in nasal and throat swabs by seminested RT‐PCR. J Med Virol 40: 96–101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jartti T, Lehtinen P, Vuorinen T, Österback R, van den Hoogen B, Osterhaus ADME, Ruuskanen O. 2004. Respiratory picornaviruses and respiratory syncytial virus as causative agents of acute expiratory wheezing in children. Emerg Infect Dis 10: 1095–1101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Klig JE, Shah NB. 2005. Office pediatrics: Current issues in lower respiratory infections in children. Curr Opin Pediatr 17: 111–118. [DOI] [PubMed] [Google Scholar]
  17. Kolls J, Deininger P, Cohen C, Larson J. 1993. cDNA equalization for reverse transcription‐polymerase chain reaction quantitation. Analyt Biochem 208: 264–269. [DOI] [PubMed] [Google Scholar]
  18. Kosters K, Reischl U, Schmetz J, Riffelmann M, Wirsing von Konig CH. 2002. Real‐time LightCycler for detection and discrimination of Bordetella pertussis and Bordetella parapertussis . J Clin Microbiol 40: 1719–1722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. La Scola B, Marrie TJ, Auffray J‐P, Raoult D. 2005. Mimivirus in pneumonia patients. Emerg Infect Dis 11: 449–452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ledford RM, Patel NR, Demenczuk TM, Watanyar A, Herbertz T, Collett MS, Pevear DC. 2004. VP1 sequencing of all human rhinovirus serotypes: Insights into genus phylogeny and susceptibility to antiviral capsid‐binding compounds. J Virol 78: 3663–3674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mackay IM, Gardam T, Arden KE, McHardy S, Whiley DM, Crisante E, Sloots TP. 2003. Co‐detection and discrimination of six human herpesviruses by multiplex PCR‐ELAHA. J Clin Virol 28: 291–302. [DOI] [PubMed] [Google Scholar]
  22. Maertzdorf J, Wang CK, Brown JB, Quinto JD, Chu M, de Graaf M, van den Hoogen BG, Spaete R, Osterhaus ADME, Fouchier RAM. 2004. Real‐time reverse transcriptase PCR assay for detection of human metapneumoviruses from all known genetic lineages. J Clin Microbiol 42: 981–986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Monto AS. 2002. The seasonality of rhinovirus infection and its implications for clinical recognition. Clin Therapeut 24: 1987–1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nicholson KG, Kent J, Hammersley V, Cancio E. 1997. Acute viral infections of upper respiratory tract in elderly people living in the community: Comparative, prospective, population based study of disease burden. Brit Med J 315: 1060–1064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A. 2004. Guideline to reference gene selection for quantitative real‐time PCR. Biochem Biophys Res Commun 313: 856–862. [DOI] [PubMed] [Google Scholar]
  26. Savolainen C, Laine P, Mulders MN, Hovi T. 2004. Sequence analysis of human rhinoviruses in the RNA‐dependent RNA polymerase coding region reveals within‐species variation. J Gen Virol 85: 2271–2277. [DOI] [PubMed] [Google Scholar]
  27. Sloots TP, McErlean P, Speicher DJ, Arden KE, Nissen MD, Mackay IM. 2006. Evidence of human coronavirus HKU1 and human bocavirus in Australian children. J Clin Virol 35: 99–102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Syrmis MW, Whiley DM, Thomas M, Mackay IM, Williamson J, Siebert DJ, Nissen MD, Sloots TP. 2004. A sensitive, specific and cost‐effective multiplex reverse‐transcriptase‐PCR assay for the detection of seven common respiratory viruses in respiratory samples. J Mol Diagn 6: 125–131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vabret A, Mourez T, Gouarin S, Petitjean J, Freymuth F. 2003. An outbreak of coronavirus OC43 respiratory infection in Normandy, France. Clin Infect Dis 36: 985–989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. van der Hoek L, Pyrc K, Jebbink MF, Vermeulen‐Oost W, Berkhout RJM, Wolthers KC, Wertheim‐van DIllen PME, Kaandorp J, Spaargaren J, Berkhout B. 2004. Identification of a new human coronavirus. Nat Med. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. van der Hoek L, Sure K, Ihorst G, Stang A, Pyrc K, Jebbink MF, Petersen G, Forster J, Berkhout B, Überla K. 2005. Croup is associated with the novel coronavirus NL63. PloS Med 2: e240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. van Elden LJR, van Loon AM, van Alphen F, Hendriksen KAW, Hoepelman AIM, van Kraaij MGJ, Oosterheert J‐J, Schipper P, Schuurman R, Nijhuis M. 2004. Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel real‐time reverse‐transcription polymerase chain reaction. J Infect Dis 189: 652–657. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Medical Virology are provided here courtesy of Wiley

RESOURCES