Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2006 Nov 17;6(24):6426–6432. doi: 10.1002/pmic.200600432

High‐throughput analysis of mumps virus and the virus‐specific monoclonal antibody on the arrays of a cationic polyelectrolyte with a spectral SPR biosensor

Hyun‐Soo Kim 1,, Se‐Hui Jung 1,, Sang‐Hyun Kim 2, In‐Bum Suh 3, Woo Jin Kim 4, Jae‐Wan Jung 1, Jong seol Yuk 1, Young‐Myeong Kim 1, Kwon‐Soo Ha 1,
PMCID: PMC7167642  PMID: 17111437

Abstract

We investigated the potential use of a spectral surface plasmon resonance (SPR) biosensor in a high‐throughput analysis of mumps virus and a mumps virus‐specific mAb on the arrays of a cationic polyelectrolyte, poly(diallyldimethylammonium chloride) (PDDA). The PDDA surface was constructed by electrostatic adsorption of the polyelectrolyte onto a monolayer of 11‐mercaptoundecanoic acid (MUA). Poly‐l‐lysine was also adsorbed onto the MUA monolayer and compared with the PDDA surface in the capacity of mumps virus immobilization. The PDDA surface showed a higher adsorption of mumps virus than the poly‐l‐lysine surface. The SPR signal caused by the virus binding onto the PDDA surface was proportional to the concentration of mumps virus from 0.5 × 105 to 14 × 105 pfu/mL. The surface structure of the virus arrays was visualized by atomic force microscopy. Then, a dose‐dependent increase in the SPR signal was observed when various concentrations of the antimumps virus antibody in buffer or human serum were applied to the virus arrays, and their interaction was specific. Thus, it is likely that the spectral SPR biosensor based on the cationic polyelectrolyte surface may provide an efficient system for a high‐throughput analysis of intact virus and serodiagnosis of infectious diseases.

Keywords: Mumps virus, PDDA, Protein arrays, Serodiagnosis, SPR biosensor

References

  • 1. Yuk, J. S. , Ha, K.‐S. , Exp. Mol. Med. 2005, 37, 1–10. [DOI] [PubMed] [Google Scholar]
  • 2. Zhu, H. , Snyder, M. , Curr. Opin. Chem. Biol. 2003, 7, 55–63. [DOI] [PubMed] [Google Scholar]
  • 3. MacBeath, G. , Schreiber, S. L. , Science 2000, 289, 1760–1763. [DOI] [PubMed] [Google Scholar]
  • 4. Kodadek, T. , Chem. Biol. 2001, 8, 105–115. [DOI] [PubMed] [Google Scholar]
  • 5. Wilson, D. S. , Mock, S. , Curr. Opin. Chem. Biol. 2001, 6, 81–85. [DOI] [PubMed] [Google Scholar]
  • 6. Griesser, H. J. , Kingshott, P. , McArthur, S. L. , McLean, K. M. et al., Biomaterials 2004, 25, 4861–4875. [DOI] [PubMed] [Google Scholar]
  • 7. Liedberg, B. , Nylander, C. , Lundström, I. , Sens. Actuators B 1983, 4, 299–304. [Google Scholar]
  • 8. McDonnell, J. M. , Curr. Opin. Chem. Biol. 2001, 5, 572–577. [DOI] [PubMed] [Google Scholar]
  • 9. Green, R. J. , Frazier, R. A. , Shakesheff, K. M. , Davis, M. C. et al., Biomaterials 2000, 21, 1823–1835. [DOI] [PubMed] [Google Scholar]
  • 10. Chou, S.‐F. , Hsu, W.‐L. , Hwang, J.‐M. , Chen, C.‐Y. , Biosens. Bioelectron. 2004, 19, 999–1005. [DOI] [PubMed] [Google Scholar]
  • 11. Brockman, J. M. , Frutos, A. G. , Corn, R. M. , J. Am. Chem. Soc. 1999, 121, 8044–8051. [Google Scholar]
  • 12. Yonzon, C. R. , Jeoung, E. , Zou, S. , Schatz, G. C. et al., J. Am. Chem. Soc. 2004, 126, 12669–12676. [DOI] [PubMed] [Google Scholar]
  • 13. Bacarese‐Hamilton, T. , Mezzasoma, L. , Ardizzoni, A. , Bistoni, F. , Crisanti, A. , J. Appl. Microbiol. 2004, 96, 10–17. [DOI] [PubMed] [Google Scholar]
  • 14. Duburcq, X. , Olivier, C. , Malingue, F. , Desmet, R. et al., Bioconjugate Chem. 2004, 15, 307–316. [DOI] [PubMed] [Google Scholar]
  • 15. Lu, D.‐D. , Chen, S.‐H. , Zhang, S.‐M. , Zhang, M.‐L. et al., Analyst 2005, 130, 474–482. [DOI] [PubMed] [Google Scholar]
  • 16. Tang, T.‐K. , Wu, M. P.‐J. , Chen, S.‐T. , Hou, M.‐H. et al., Proteomics 2005, 5, 925–937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Abad, L. W. , Neumann, M. , Tobias, L. , Obenauer‐Kutner, L. et al., Anal. Biochem. 2002, 310, 107–113. [DOI] [PubMed] [Google Scholar]
  • 18. McGill, A. , Greensill, J. , Marsh, R. , Craft, A. W. , Toms, G. L. , J. Med. Viol. 2004, 74, 492–498. [DOI] [PubMed] [Google Scholar]
  • 19. Chung, J. W. , Kim, S. D. , Bernhardt, R. , Pyun, J. C. , Sens. Actuators B 2005, 111–112, 416–422. [Google Scholar]
  • 20. Malkin, A. J. , McPherson, A. , Gershon, P. D. , J. Virol. 2003, 77, 6332–6340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Huff, J. L. , Lynch, M. P. , Nettikadan, S. , Johnson, J. C. et al., J. Biomol. Screening 2004, 9, 491–497. [DOI] [PubMed] [Google Scholar]
  • 22. Dultsev, F. N. , Speight, R. E. , Fiorini, M. T. , Blackburn, J. M. et al., Anal. Chem. 2001, 73, 3935–3939. [DOI] [PubMed] [Google Scholar]
  • 23. Hofstadler, S. A. , Sampath, R. , Blyn, L. B. , Eshoo, M. W. et al., Intl. J. Mass Spectrom. 2005, 242, 23–41. [Google Scholar]
  • 24. Roper, D. K. , Nakra, S. , Anal. Chem. 2006, 348, 75–83. [DOI] [PubMed] [Google Scholar]
  • 25. Boltovets, P. M. , Snopok, B. A. , Boyko, V. R. , Shevchenko, T. P. et al., J. Virol. Methods 2004, 121, 101–106. [DOI] [PubMed] [Google Scholar]
  • 26. Rubin, S. , Mauldin, J. , Chumakov, K. , Vanderzanden, J. et al., Vaccine 2006, 24, 2662–2668. [DOI] [PubMed] [Google Scholar]
  • 27. Kim, S. H. , Kee, S. H. , Ahn, J.‐E. , Song, J.‐W. , Song, K.‐J. , J. Bacteriol. Virol. 2003, 33, 203–208. [Google Scholar]
  • 28. Jung, J.‐W. , Jung, S.‐H. , Kim, H.‐S. , Yuk, J. S. et al., Proteomics 2006, 6, 1110–1120. [DOI] [PubMed] [Google Scholar]
  • 29. Yuk, J. S. , Jung, S.‐H. , Jung, J.‐W. , Hong, D.‐G. et al., Proteomics 2004, 4, 3468–76. [DOI] [PubMed] [Google Scholar]
  • 30. Deng, M. , Cliver, D. O. , J. Virol. Methods 1984, 8, 87–98. [DOI] [PubMed] [Google Scholar]
  • 31. Bystrická, D. , Lenz, O. , Mráz, I. , Dedic, P. , Síp, M. , Acta Virol. 2003, 47, 41–44. [PubMed] [Google Scholar]
  • 32. Njai, H. F. , Lewi, P. J. , Janssen, C. G. M. , Garcia, S. et al., Antivir. Ther. 2005, 10, 255–262. [PubMed] [Google Scholar]

Articles from Proteomics are provided here courtesy of Wiley

RESOURCES