Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2007 Jul 13;1(8):747–757. doi: 10.1002/prca.200700243

Proteomic analysis of serum, plasma, and lymph for the identification of biomarkers

Zhaojing Meng 1, Timothy D Veenstra 1,
PMCID: PMC7167890  PMID: 21136731

Abstract

Probably no topic has generated more excitement in the world of proteomics than the search for biomarkers. This excitement has been generated by two realities: the constant need for better biomarkers that can be used for disease diagnosis and prognosis, and the recent developments in proteomic technologies that are capable of scanning the individual proteins within varying complex clinical samples. Ideally a biomarker would be assayable from a noninvasively collected sample, therefore, much of the focus in proteomics has been on the analysis of biofluids such as serum, plasma, urine, cerebrospinal fluid, lymph, etc. While the discovery of biomarkers has been elusive, there have been many advances made in the understanding of the proteome content of various biofluids, and in the technologies used for their analysis, that continues to point the research community toward new methods for achieving the ultimate goal of identifying novel disease‐specific biomarkers. In this review, we will describe and discuss many of the proteomic approaches taken in an attempt to find novel biomarkers in serum, plasma, and lymph.

Keywords: Biomarker, Clinical diagnostics, Lymph, Plasma, Serum

References

  • 1. Zhang, H. , Liu, A. Y. , Loriaux, P. , Wollshceid, B. et al., Mol. Cell. Proteomics 2007, 6, 64–71. [DOI] [PubMed] [Google Scholar]
  • 2. Cameron, J. R. , Skofronick, J. G. , Roderick, M. , Grant, R. M. , Physics of the Body. 2nd Edn., Medical Physics Publishing, Madison, WI: 1999, p. 182. [Google Scholar]
  • 3. Olszewski, W. L. , Lymphat. Res. Biol. 2003, 1, 11–21. [DOI] [PubMed] [Google Scholar]
  • 4. Luque‐Garcia, J. L. , Neubert, T. A. , J. Chromatogr. A 2007, 1153, 259–276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Lum, G. , Gambino, S. R. , Am. J. Clin. Pathol. 1974, 61, 108–113. [DOI] [PubMed] [Google Scholar]
  • 6. Kimball, D. B. , Rickles, F. R. , Gockerman, J. P. , Hattler, B. G. et al., J. Lab. Clin. Med. 1976, 87, 868–881. [PubMed] [Google Scholar]
  • 7. Spence, G. M. , Graham, A. N. , Mulholland, K. et al., Int. J. Biol. Markers 2002, 17, 119–124. [DOI] [PubMed] [Google Scholar]
  • 8. Benoy, I. , Salgado, R. , Colpaert, C. , Weytjens, R. et al., Clin. Breast Cancer 2002, 2, 311–315. [DOI] [PubMed] [Google Scholar]
  • 9. Rai, A. J. , Gelfand, C. A. , Haywood, B. C. , Warunek, D. J. et al., Proteomics 2005, 5, 3262–3277. [DOI] [PubMed] [Google Scholar]
  • 10. Teahan, O. , Gamble, S. , Holmes, Waxmann, J. et al., Anal. Chem. 2006, 78, 4307–4318. [DOI] [PubMed] [Google Scholar]
  • 11. Rai, A. J. , Vitzthum, F. , Expert Rev. Proteomics 2006, 3, 409–426. [DOI] [PubMed] [Google Scholar]
  • 12. Nordhoff, E. , Egelhofer, V. , Giavalisco, P. , Eickhoff, H. et al., Electrophoresis 2001, 22, 2844–2855. [DOI] [PubMed] [Google Scholar]
  • 13. Washburn, M. P. , Wolters, D. , Yates, J. R., III , Nat. Biotechnol. 2001, 19, 242–247. [DOI] [PubMed] [Google Scholar]
  • 14. Petricoin, E. F. , Ardekani, A. M. , Hitt, B. A. , Levine, P. J. et al., Lancet. 2002, 359, 572–577. [DOI] [PubMed] [Google Scholar]
  • 15. Anderson, L. , J. Physiol. 2005, 563, 23–60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Fujii, K. , Nakano, T. , Kawamura, T. , Usui, F. et al., J. Proteome Res. 2004, 3, 712–718. [DOI] [PubMed] [Google Scholar]
  • 17. Jin, W. H. , Dai, J. , Li, S. J. , Xia, Q. C. , J. Proteome Res. 2005, 4, 613–619. [DOI] [PubMed] [Google Scholar]
  • 18. Zolotarjova, N. , Martosella, J. , Nicol, G. , Bailey, J. et al., Proteomics 2005, 5, 3304–3313. [DOI] [PubMed] [Google Scholar]
  • 19. Darde, V. M. , Barderas, M. G. , Vivanco, F. , Methods Mol. Biol. 2007, 357, 351–364. [DOI] [PubMed] [Google Scholar]
  • 20. Gong, Y. , Li, X. , Yang, B. , Ying, W. et al., J. Proteome Res. 2006, 5, 1379–1387. [DOI] [PubMed] [Google Scholar]
  • 21. Whiteaker, J. R. , Zhang, H. , Eng, J. K. , Fang, R. et al., J. Proteome Res. 2007, 6, 828–836. [DOI] [PubMed] [Google Scholar]
  • 22. Gundry, R. L. , Fu, Q. , Jelinek, C. A. , Van Eyk, J. E. , Cotter, R. J. , Proteomics Clin. Appl. 2007, 1, 73–88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Zhou, M. , Lucas, D. A. , Chan, K. C. , Issaq, H. J. et al., Electrophoresis 2004, 25, 1289–1298. [DOI] [PubMed] [Google Scholar]
  • 24. Zhang, H. , Li, X.‐J. , Martin, D. B. , Aebersold, R. , Nat. Biotechnol. 2003, 21, 660–666. [DOI] [PubMed] [Google Scholar]
  • 25. Liu, T. , Qian, W. J. , Strittmatter, E. F. , Camp, D. G. et al., Anal. Chem. 2004, 76, 5345–5353. [DOI] [PubMed] [Google Scholar]
  • 26. Pieper, R. , Gatlin, C. L. , Makusky, A. J. , Russo, P. S. et al., Proteomics 2003, 3, 1345–1364. [DOI] [PubMed] [Google Scholar]
  • 27. Adkins, J. N. , Varnum, S. M. , Auberry, K. J. , Moore, R. J. et al., Mol. Cell. Proteomics 2002, 1, 947–955. [DOI] [PubMed] [Google Scholar]
  • 28. Ishihama, Y. , Oda, Y. , Tabata, T. , Sato, T. et al., Mol. Cell. Proteomics 2005, 4, 1265–1272. [DOI] [PubMed] [Google Scholar]
  • 29. Tang, H. Y. , Ali‐Khan, N. , Echan, L. A. , Levenkova, N. et al., Proteomics 2005, 5, 3329–3342. [DOI] [PubMed] [Google Scholar]
  • 30. Shen, Y. , Jacobs, J. M. , Camp, D. G. , Fan, R. et al., Anal. Chem. 2004, 76, 1134–1144. [DOI] [PubMed] [Google Scholar]
  • 31. Liu, T. , Qian, W.‐J. , Gritsenko, M. A. , Xiao, W. et al., Mol. Cell. Proteomics 2006, 5, 1899–1913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Sheng, S. , Chen, D. , Van Eyk, J. E. , Mol. Cell. Proteomics 2006, 5, 26–34. [DOI] [PubMed] [Google Scholar]
  • 33. Valentine, S. J. , Plascencia, M. D. , Liu, X. , Krishnan, M. et al., J. Proteome Res. 2006, 5, 2977–2984. [DOI] [PubMed] [Google Scholar]
  • 34. Leak, L. V. , Liotta, L. , Krutzsch, H. , Jones, M. et al., Proteomics 2004, 4, 753–765. [DOI] [PubMed] [Google Scholar]
  • 35. Chen, J. H. , Chang, Y. W. , Yao, C. W. , Chiueh, T. S. et al., Proc. Natl. Acad. Sci. USA 2004, 101, 17039–17044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Ogata, Y. , Hepplmann, C. J. , Charlesworth, M. C. , Madden, B. J. et al., J. Proteome Res. 2006, 5, 3318–3325. [DOI] [PubMed] [Google Scholar]
  • 37. Wu, C. C. , MacCoss, M. J. , Howell, K. E. , Matthews, D. E. et al., Anal. Chem. 2004, 76, 4951–4959. [DOI] [PubMed] [Google Scholar]
  • 38. Haqqani, A. S. , Hutchison, J. S. , Ward, R. , Stanimirovic, D. B. , J. Neurotrauma 2007, 24, 54–74. [DOI] [PubMed] [Google Scholar]
  • 39. Qian, W. J. , Jacobs, J. M. , Camp, D. G., II , Monroe, M. E. et al., Proteomics 2005, 5, 572–584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Rifai, N. , Gillette, M. A. , Carr, S. A. , Nat. Biotechnol. 2006, 24, 971–983. [DOI] [PubMed] [Google Scholar]

Articles from Proteomics. Clinical Applications are provided here courtesy of Wiley

RESOURCES