Abstract
Recently we have described the discovery and complete genome sequence of a novel coronavirus associated with pneumonia, coronavirus HKU1 (CoV‐HKU1). In this study, a detailed in silico analysis of the ORF1ab, encoding the 7,182‐amino acid replicase polyprotein in the CoV‐HKU1 genome showed that the replicase polyprotein of CoV‐HKU1 is cleaved by its papain‐like proteases and 3C‐like protease (3CLpro) into 16 polypeptides homologous to the corresponding polypeptides in other coronaviruses. Surprisingly, analysis of the putative cleavage sites of the 3CLpro revealed a unique putative cleavage site. In all known coronaviruses, the P1 positions at the cleavage sites of the 3CLpro are occupied by glutamine. This is also observed in CoV‐HKU1, except for one site at the junction between nsp10 (helicase) and nsp11 (member of exonuclease family), where the P1 position is occupied by histidine. This amino acid substitution is due to a single nucleotide mutation in the CoV‐HKU1 genome, CAG/A to CAT. This probably represents a novel cleavage site because the same mutation was consistently observed in CoV‐HKU1 sequences from multiple specimens of different patients; the P2 and P1′‐P12′ positions of this cleavage site are consistent between CoV‐HKU1 and other coronaviruses; and as the helicase is one of the most conserved proteins in coronaviruses, cleavage between nsp10 and nsp11 should be an essential step for the generation of the mature functional helicase. Experiments, including purification and C‐terminal amino acid sequencing of the CoV‐HKU1 helicase and trans‐cleavage assays of the CoV‐HKU1 3CLpro will confirm the presence of this novel cleavage site.
Keywords: coronavirus HKU1, ORF1ab, 3C‐like protease
Abbreviations
- Appr>p
ADP‐ribose 1″,2″‐cyclic phosphate
- Appr‐1″p
ADP‐ribose 1 ″‐phosphate
- ADRP
ADP‐ribose 1″‐phosphatase
- BCoV
bovine coronavirus
- 3CLpro
3C‐like protease
- CoV‐HKU1
coronavirus HKU1
- CPDase
cyclic nucleotide phosphodiesterase
- E
envelope
- ExoN
3′‐to‐5′ exonuclease
- HCoV‐229E
human coronavirus 229E
- HCoV‐NL63
human coronavirus NL63
- HCoV‐OC43
human coronavirus OC43
- IBV
infectious bronchitis virus
- M
membrane
- MHV
murine hepatitis virus
- N
nucleocapsid
- 2′‐O‐MT
S‐adenosylmethionine‐dependent ribose 2′‐O‐methyltransferase
- ORF
open reading frame
- PLpro
papain‐like proteases
- pol
RNA‐dependent RNA polymerase
- RT‐PCR
reverse transcriptase polymerase chain reaction
- S
spike
- SARS
Severe Acute Respiratory Syndrome
- SARS‐CoV
SARS coronavirus
- XendoU
poly(U)‐specific endoribonuclease.
References
- 1. Ago, H. , Adachi, T. , Yoshida, A. , Yamamoto, M. , Habuka, N. , Yatsunami, K. , and Miyano, M. 1999. Crystal structure of the RNA‐dependent RNA polymerase of hepatitis C virus. Struct. Fold. Des. 7: 1417–1426. [DOI] [PubMed] [Google Scholar]
- 2. Bateman, A. , Coin, L. , Durbin, R. , Finn, R.D. , Hollich, V. , Griffiths‐Jones, S. , Khanna, A. , Marshall, M. , Moxon, S. , Sonnhammer, E.L. , Studholme, D.J. , Yeats, C. , and Eddy, S.R. 2004. The Pfam protein families database. Nucleic Acids Res. 32 (Database issue): D138–D141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3. Blom, N. , Hansen, J. , Blaas, D. , and Brunak, S. 1996. Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks. Protein Sci. 5: 2203–2216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. Bonilla, P.J. , Hughes, S.A. , and Weiss, S.R. 1997. Characterization of a second cleavage site and demonstration of activity in trans by the papain‐like proteinase of the murine coronavirus mouse hepatitis virus strain A59. J. Virol. 71: 900–909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Boursnell, M.E. , Brown, T.D. , Foulds, I.J. , Green, P.F. , Tomley, F.M. , and Binns, M.M. 1987. Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J. Gen. Virol. 68: 57–77. [DOI] [PubMed] [Google Scholar]
- 6. Bredenbeek, P.J. , Pachuk, C.J. , Noten, A.F. , Charite, J. , Luytjes, W. , Weiss, S.R. , and Spaan, W.J. 1990. The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV‐A59; a highly conserved polymerase is expressed by an efficient ribosomal frameshifting mechanism. Nucleic Acids Res. 18: 1825–1832. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Brierley, I. , Digard, P. , and Inglis, S.C. 1989. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57: 537–547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. Bugl, H. , Fauman, E.B. , Staker, B.L. , Zheng, F. , Kushner, S.R. , Saper, M.A. , Bardwell, J.C. , and Jakob, U. 2000. RNA methylation under heat shock control. Mol. Cell 6: 349–360. [DOI] [PubMed] [Google Scholar]
- 9. Dougherty, W.G. , and Semler, B.L. 1993. Expression of virus‐encoded proteinases: functional and structural similarities with cellular enzymes. Microbiol. Rev. 57: 781–822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. Forss, S. , and Schaller, H. 1982. A tandem repeat gene in a picornavirus. Nucleic Acids Res. 10: 6441–6450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11. Fouchier, R.A. , Hartwig, N.G. , Bestebroer, T.M. , Niemever, B. , De Jong, J.C. , Simon, J.H. , and Osterhaus, A.D. 2004. A previously undescribed coronavirus associated with respiratory disease in humans. Proc. Natl. Acad. Sci. U.S.A. 101: 6212–6216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Gorbalenya, A.E. , and Koonin, E.V. 1993. Helicases: amino acid sequence comparisons and structure—function relationships. Curr. Opin. Struct. Biol. 3: 419–429. [Google Scholar]
- 13. Guan, Y. , Zheng, B.J. , He, Y.Q. , Liu, X.L. , Zhuang, Z.X. , Cheung, C.L. , Luo, S.W. , Li, P.H. , Zhang, L.J. , Guan, Y.J. , Butt, K.M. , Wong, K.L. , Chan, K.W. , Lim, W. , Shortridge, K.F. , Yuen, K.Y. , Peiris, J.S. , and Poon, L.L. 2003. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302: 276–278. [DOI] [PubMed] [Google Scholar]
- 14. Guex, N. , and Peitsch, M.C. 1997. SWISS‐MODEL and the Swiss‐PdbViewer: an environment for comparative protein modelling. Electrophoresis 18: 2714–2723. [DOI] [PubMed] [Google Scholar]
- 15. Hansen, J.L. , Long, A.M. , and Schultz, S.C. 1997. Structure of the RNA‐dependent RNA polymerase of poliovirus. Structure 5: 1109–1122. [DOI] [PubMed] [Google Scholar]
- 16. Hegyi, A. , and Ziebuhr, J. 2002. Conservation of substrate specificities among coronavirus main proteases. J. Gen. Virol. 83: 595–599. [DOI] [PubMed] [Google Scholar]
- 17. Hughes, S.A. , Bonilla, P.J. , and Weiss, S.R. 1995. Identification of the murine coronavirus p28 cleavage site. J. Virol. 69: 809–813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Ivanov, K.A. , Thiel, V. , Dobbe, J.C. , Van der Meer, Y. , Snijder, E.J. , and Ziebuhr, J. 2004. Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J. Virol. 78: 5619–5632. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. Kadare, G. , and Haenni, A.L. 1997. Virus‐encoded RNA helicases. J. Virol. 71: 2583–2590. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Kanjanahaluethai, A. , Jukneliene, D. , and Baker, S.C. 2003. Identification of the murine coronavirus MP1 cleavage site recognized by papain‐like proteinase 2. J. Virol. 77: 7376–7382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Kiemer, L. , Lund, O. , Brunak, S. , and Blom, N. 2004. Coronavirus 3CLpro proteinase cleavage sites: possible relevance to SARS virus pathology. BMC Bioinformatics 5: 72. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Koradi, R. , Billeter, M. , and Wüthrich, K. 1996. MOL‐MOL: a program for display and analysis of macromolecular structures. J. Mol. Grap. 14: 51–55. [DOI] [PubMed] [Google Scholar]
- 23. Krausslich, H.G. , and Wimmer, E. 1988. Viral proteinases. Annu. Rev. Biochem. 57: 701–754. [DOI] [PubMed] [Google Scholar]
- 24. Kusters, J.G. , Jager, E.J. , Niesters, H.G. , and Van der Zeijst, B.A. 1990. Sequence evidence for RNA recombination in field isolates of avian coronavirus infectious bronchitis virus. Vaccine 8: 605–608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Lai, M.M. , Baric, R.S. , Makino, S. , Keck, J.G. , Egbert, J. , Leibowitz, J.L. , and Stohlman, S.A. 1985. Recombination between nonsegmented RNA genomes of murine coronaviruses. J. Virol. 56: 449–456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. Lai, M.M. , and Cavanagh, D. 1997. The molecular biology of coronaviruses. Adv. Virus Res. 48: 1–100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. Laneve, P. , Altieri, F. , Fiori, M.E. , Scaloni, A. , Bozzoni, I. , and Caffarelli, E. 2003. Purification, cloning, and characterization of XendoU, a novel endoribonuclease involved in processing of intron‐encoded small nucleolar RNAs in Xenopus laevis . J. Biol. Chem. 278: 13026–13032. [DOI] [PubMed] [Google Scholar]
- 28. Lau, S.K. , Woo, P.C. , Wong, B.H. , Tsoi, H.W. , Woo, G.K. , Poon, R.W. , Chan, K.H. , Wei, W.I. , Peiris, J.S. , and Yuen, K.Y. 2004. Detection of severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in SARS patients by enzyme‐linked immunosorbent assay. J. Clin. Microbiol. 42: 2884–2889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. Lee, C.W. , and Jackwood, M.W. 2000. Evidence of genetic diversity generated by recombination among avian coronavirus IBV. Arch. Virol. 145: 2135–2148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Lee, H.J. , Shieh, C.K. , Gorbalenya, A.E. , Koonin, E.V. , La Monica, N. , Tuler, J. , Bagdzhadzhyan, A. , and Lai, M.M. 1991. The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology 180: 567–582. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Makino, S. , Keck, J.G. , Stohlman, S.A. , and Lai, M.M. 1986. High‐frequency RNA recombination of murine coronaviruses. J. Virol. 57: 729–737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32. Marra, M.A. , Jones, S.J. , Astell, C.R. , Holt, R.A. , Brooks‐Wilson, A. , Butterfield, Y.S. , Khattra, J. , Asano, J.K. , Barber, S.A. , Chan, S.Y. , Cloutier, A. , Coughlin, S.M. , Freeman, D. , Girn, N. , Griffith, O.L. , Leach, S.R. , Mayo, M. , McDonald, H. , Montgomery, S.B. , Pandoh, P.K. , Petrescu, A.S. , Robertson, A.G. , Schein, J.E. , Siddiqui, A. , Smailus, D.E. , Stott, J.M. , Yang, G.S. , Plummer, F. , Andonov, A. , Artsob, H. , Bastien, N. , Bernard, K. , Booth, T.F. , Bowness, D. , Czub, M. , Drebot, M. , Fernando, L. , Flick, R. , Garbutt, M. , Gray, M. , Grolla, A. , Jones, S. , Feldmann, H. , Meyers, A. , Kabani, A. , Li, Y. , Normand, S. , Stroher, U. , Tipples, G.A. , Tyler, S. , Vogrig, R. , Ward, D. , Watson, B. , Brunham, R.C. , Krajden, M. , Petric, M. , Skowronski, D.M. , Upton, C. , and Roper, R.L. 2003. The genome sequence of the SARS‐associated coronavirus. Science 300: 1399–1404. [DOI] [PubMed] [Google Scholar]
- 33. Nasr, F. , and Filipowicz, W. 2000. Characterization of the Saccharomyces cerevisiae cyclic nucleotide phosphodiesterase involved in the metabolism of ADP‐ribose 1″,2″‐cyclic phosphate. Nucleic Acids Res. 28: 1676–1683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34. Ng, K.K. , Cherney, M.M. , Vazquez, A.L. , Machin, A. , Alonso, J.M. , Parra, F. , and James, M.N. 2002. Crystal structures of active and inactive conformations of a caliciviral RNA‐dependent RNA polymerase. J. Biol. Chem. 277: 1381–1387. [DOI] [PubMed] [Google Scholar]
- 35. Palmenberg, A.C. 1987. Picornaviral processing: some new ideas. J. Cell Biochem. 33: 191–198. [DOI] [PubMed] [Google Scholar]
- 36. Peiris, J.S. , Lai, S.T. , Poon, L.L. , Guan, Y. , Yam, L.Y. , Lim, W. , Nicholls, J. , Yee, W.K. , Yan, W.W. , Cheung, M.T. , Cheng, V.C. , Chan, K.H. , Tsang, D.N. , Yung, R.W. , Ng, T.K. , Yuen, K.Y. , And SARS Study Group . 2003. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361: 1319–1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37. Peiris, J.S. , Chu, C.M. , Cheng, V.C. , Chan, K.S. , Hung, I.F. , Poon, L.L. , Law, K.I. , Tang, B.S. , Hon, T.Y. , Chan, C.S. , Chan, K.H. , Ng, J.S. , Zheng, B.J. , Ng, W.L. , Lai, R.W. , Guan, Y. , Yuen, K.Y. , And HKU/UCH SARS Study Group . 2003. Clinical progression and viral load in a community outbreak of coronavirus‐associated SARS pneumonia: a prospective study. Lancet 361: 1767–1772. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. Rost, B. , and Liu, J. 2003. The PredictProtein server. Nucleic Acids Res. 31: 3300–3304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39. Rota, P.A. , Oberste, M.S. , Monroe, S.S. , Nix, W.A. , Campagnoli, R. , Icenogle, J.P. , Penaranda, S. , Bankamp, B. , Maher, K. , Chen, M.H. , Tong, S. , Tamin, A. , Lowe, L. , Frace, M. , DeRisi, J.L. , Chen, Q. , Wang, D. , Erdman, D.D. , Peret, T.C. , Burns, C. , Ksiazek, T.G. , Rollin, P.E. , Sanchez, A. , Liffick, S. , Holloway, B. , Limor, J. , McCaustland, K. , Olsen‐Rasmussen, M. , Fouchier, R. , Gunther, S. , Osterhaus, A.D. , Drosten, C. , Pallansch, M.A. , Anderson, L.J. , and Bellini, W.J. 2003. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300: 1394–1399. [DOI] [PubMed] [Google Scholar]
- 40. Schwede, T. , Kopp, J. , Guex, N. , and Peitsch, M.C. 2003. SWISS‐MODEL: an automated protein homology‐modeling server. Nucleic Acids Res. 31: 3381–3385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41. Seybert, A. , Hegyi, A. , Siddell, S.G. , and Ziebuhr, J. 2000. The human coronavirus 229E superfamily 1 helicase has RNA and DNA duplex‐unwinding activities with 5′‐to‐3′ polarity. RNA 6: 1056–1068. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42. Seybert, A. , Posthuma, C.C. , Van Dinten, L.C. , Snijder, E.J. , Gorbalenya, A.E. , and Ziebuhr, J. 2005. A complex zinc finger controls the enzymatic activities of nidovirus helicases. J. Virol. 79: 696–704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43. Snijder, E.J. , Bredenbeek, P.J. , Dobbe, J.C. , Thiel, V. , Ziebuhr, J. , Poon, L.L. , Guan, Y. , Rozanov, M. , Spaan, W.J. , and Gorbalenya, A.E. 2003. Unique and conserved features of genome and proteome of SARS‐coronavirus, an early split‐off from the coronavirus group 2 lineage. J. Mol. Biol. 331: 991–1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44. Tanner, J.A. , Watt, R.M. , Chai, Y.B. , Lu, L.Y. , Lin, M.C. , Peiris, J.S. , Poon, L.L. , Kung, H.F. , and Huang, J.D. 2003. The severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase belongs to a distinct class of 5′ to 3′ viral helicases. J. Biol. Chem. 278: 39578–39582. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45. Thiel, V. , Ivanov, K.A. , Putics, A. , Hertzig, T. , Schelle, B. , Bayer, S. , Weissbrich, B. , Snijder, E.J. , Rabenau, H. , Doerr, H.W. , Gorbalenya, A.E. , and Ziebuhr, J. 2003. Mechanisms and enzymes involved in SARS coronavirus genome expression. J. Gen. Virol. 84: 2305–2315. [DOI] [PubMed] [Google Scholar]
- 46. Thompson, J.D. , Gibson, T.J. , Plewniak, F. , Jeanmougin, F. , and Higgins, D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876–4882. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47. Van der Hoek, L. , Pyrc, K. , Jebbink, M.F. , Vermeulen‐Oost, W. , Berkhout, R.J. , Wolthers, K.C. , Wertheim‐Van Dillen, P.M. , Kaandorp, J. , Spaargaren, J. , and Berkhout, B. 2004. Identification of a new human coronavirus. Nat. Med. 10: 368–373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48. Woo, P.C. , Lau, S.K. , Chu, C.M. , Chan, K.H. , Tsoi, H.W. , Huang, Y. , Wong, B.H. , Poon, R.W. , Cai, J.J. , Luk, W.K. , Poon, L.L. , Wong, S.S. , Guan, Y. , Peiris, J.S. , and Yuen, K.Y. 2005. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol. 79: 884–895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49. Woo, P.C. , Lau, S.K. , Tsoi, H.W. , Huang, Y. , Poon, R.W. , Chu, C.M. , Lee, R.A. , Luk, W.K. , Wong, G.K. , Wong, B.H. , Cheng, V.C. , Tang, B.S. , Wu, A.K. , Yung, R.W. , Chen, H. , Guan, Y. , Chan, K.H. , and Yuen, K.Y. 2005. Clinical features and molecular epidemiology of coronavirus HKU1 associated community‐acquired pneumonia. J. Infect. Dis. (in press). [PubMed]
- 50. Woo, P.C. , Lau, S.K. , Huang, Y. , Tsoi, H.W. , Chan, K.H. , and Yuen, K.Y. 2005. Phylogenetic and recombination analysis of coronavirus HKU1, a novel coronavirus from patients with pneumonia. Arch. Virol. (in press). [DOI] [PMC free article] [PubMed]
- 51. Woo, P.C. , Lau, S.K. , Tsoi, H.W. , Chan, K.H. , Wong, B.H. , Che, X.Y. , Tam, V.K. , Tam, S.C. , Cheng, V.C. , Hung, I.F. , Wong, S.S. , Zheng, B.J. , Guan, Y. , and Yuen, K.Y. 2004. Relative rates of non‐pneumonic SARS coronavirus infection and SARS coronavirus pneumonia. Lancet 363: 841–845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52. Woo, P.C. , Lau, S.K. , Wong, B.H. , Tsoi, H.W. , Fung, A.M. , Chan, K.H. , Tam, V.K. , Peiris, J.S. , and Yuen, K.Y. 2004. Detection of specific antibodies to severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein for serodiagnosis of SARS coronavirus pneumonia. J. Clin. Microbiol. 42: 2306–2309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53. Woo, P.C. , Lau, S.K. , Wong, B.H. , Chan, K.H. , Chu, C.M. , Tsoi, H.W. , Huang, Y. , Peiris, J.S. , and Yuen, K.Y. 2004. Longitudinal profile of immunoglobulin G (IgG), IgM, and IgA antibodies against the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in patients with pneumonia due to the SARS coronavirus. Clin. Diagn. Lab. Immunol. 11: 665–668. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54. Yang, H. , Yang, M. , Ding, Y. , Liu, Y. , Lou, Z. , Zhou, Z. , Sun, L. , Mo, L. , Ye, S. , Pang, H. , Gao, G.F. , Anand, K. , Bartlam, M. , Hilgenfeld, R. , and Rao, Z. 2003. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc. Natl. Acad. Sci. U.S.A. 100: 13190–13195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55. Ziebuhr, J. , Thiel, V. , and Gorbalenya, A.E. 2001. The auto‐catalytic release of a putative RNA virus transcription factor from its polyprotein precursor involves two paralogous papain‐like proteases that cleave the same peptide bond. J. Biol. Chem. 276: 33220–33232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56. Zuo, Y. , and Deutscher, M.P. 2001. Exoribonuclease super‐families: structural analysis and phylogenetic distribution. Nucleic Acids Res. 29: 1017–1026. [DOI] [PMC free article] [PubMed] [Google Scholar]
