Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2006 Dec 29;51(1):116–134. doi: 10.1002/mnfr.200600173

Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas

Mendel Friedman 1
PMCID: PMC7168386  PMID: 17195249

Abstract

Tea leaves produce organic compounds that may be involved in the defense of the plants against invading pathogens including insects, bacteria, fungi, and viruses. These metabolites include polyphenolic compounds, the six so‐called catechins, and the methyl‐xanthine alkaloids caffeine, theobromine, and theophylline. Postharvest inactivation of phenol oxidases in green tea leaves prevents oxidation of the catechins, whereas postharvest enzyme‐catalyzed oxidation (fermentation) of catechins in tea leaves results in the formation of four theaflavins as well as polymeric thearubigins. These substances impart the black color to black teas. Black and partly fermented oolong teas contain both classes of phenolic compounds. A need exists to develop a better understanding of the roles of polyphenolic tea compounds in food and medical microbiology. This overview surveys and interprets our present knowledge of activities of tea flavonoids and teas against foodborne and other pathogenic bacteria, virulent protein toxins produced by some of the bacteria, virulent bacteriophages, pathogenic viruses and fungi. Also covered are synergistic, mechanistic, and bioavailability aspects of the antimicrobial effects. Further research is suggested for each of these categories. The herein described findings are not only of fundamental interest, but also have practical implications for nutrition, food safety, and animal and human health.

Keywords: Antibacterial effects, Antitoxin effects, Antiviral effects, Tea flavonoids, Teas

References

  • [1]. Friedman, M. , Henika, P. R. , Mandrell, R. E. , Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica, J. Food Prot. 2002, 65, 1545–1560. [DOI] [PubMed] [Google Scholar]
  • [2]. Friedman, M. , Henika, P. R. , Mandrell, R. E. , Antibacterial activities of phenolic benzaldehydes and benzoic acids against Campylobacter jejuni, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica, J. Food Prot. 2003, 66, 1811–1821. [DOI] [PubMed] [Google Scholar]
  • [3]. Friedman, M. , Henika, P. R. , Levin, C. E. , Mandrell, R. E. , Kozukue, N. , Antimicrobial activities of tea catechins and theaflavins and tea extracts against Bacillus cereus, J. Food Prot. 2006, 69, 354–361. [DOI] [PubMed] [Google Scholar]
  • [4]. Friedman, M. , Buick, R. , Elliott, C. T. , Antimicrobial activities of naturally occurring compounds against antibiotic‐resistant Bacillus cereus, vegetative cells and spores, Escherichia coli, and Staphylococcus aureus, J. Food Prot. 2003, 67, 1774–1778. [DOI] [PubMed] [Google Scholar]
  • [5]. Friedman, M. , Buick, R. , Elliott, C. T. , Antimicrobial activities of plant compounds against antibiotic‐resistant Micrococcus luteus, Int. J. Antimicrob. Agents 2006, 28, 156–158. [DOI] [PubMed] [Google Scholar]
  • [6]. Friedman, M. , Structure–antibiotic activity relationships of plant compounds against nonresistant and antibiotic‐resistant foodborne pathogens, in: Juneja, V. K., Cherry, J. P., Tunick, M. H. (Eds.), Advances in Microbial Food Safety, American Chemical Society, Washington DC 2006, pp. 167–183.
  • [7]. Friedman, M. , Henika, P. R. , Levin, C. E. , Mandrell, R. E. , Antibacterial activities of plant essential oils and their components against Escherichia coli O157:H7 and Salmonella enterica in apple juice, J. Agric. Food Chem. 2004, 52, 6042–6048. [DOI] [PubMed] [Google Scholar]
  • [8]. Friedman, M. , Henika, P. R. , Olsen, C. W. , Avena‐Bustillos, A. J. , McHugh, T. , Antimicrobial activities of plant compounds against Escherichia coli O157:H7 and Salmonella enterica serovar Hadar in tomato and vegetable juices and in a tomato/pectin edible film formulation, 93rd Annual Meeting of the International Association for Food Protection, Calgary, Canada, August 13–16, Abstract T3‐01.
  • [9]. Friedman, M. , Henika, P. R. , Levin, C. E. , Mandrell, R. E. , Antimicrobial wine formulations against the foodborne pathogens Escherichia coli O157:H7 and Salmonella enterica, J. Food Sci. 2006, 71, M245–M251. [Google Scholar]
  • [10]. Juneja, V. K. , Thippareddi, H. , Friedman, M. , Control of Clostridium perfringens in cooked ground beef by carvacrol, cinnamaldehyde, thymol, or oregano oil during chilling, J. Food Prot. 2006, 69, 1546–1551. [DOI] [PubMed] [Google Scholar]
  • [11]. Juneja, V. K. , Friedman, M. , Carvacrol, cinnamaldehyde, oregano oil, and thymol inhibit Clostridium perfringens spore germination in ground turkey during chilling, J. Food Prot. 2007, 70, 218–221. [DOI] [PubMed] [Google Scholar]
  • [12]. Juneja, V. K. , Thippareddi, H. , Bari, L. , Inatsu, Y. , Kawamoto, S. , Friedman, M. , Chitosan protects cooked ground beef and turkey against Clostridium perfringens spores during chilling, J. Food Sci. 2006, 71, M236–M240. [Google Scholar]
  • [13]. Cushnie, T. P. , Lamb, A. J. , Antimicrobial activity of flavonoids, Int. J. Antimicrob. Agents 2005, 26, 343–356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14]. Beers, M. H. (Ed.), Merck Manual of Diagnosis and Therapy, 18th Edn., Merck Research Laboratories, Whitehouse Station, NJ 2006.
  • [15]. Spraycar, M. (Ed.), PDR Medical Dictionary, Medical Economics, Montvale, NJ 1995.
  • [16]. Arts, I. C. , van De Putte, B. , Hollman, P. C. , Catechin contents of foods commonly consumed in The Netherlands. 2. Tea, wine, fruit juices, and chocolate milk, J. Agric. Food Chem. 2000, 48, 1752–1757. [DOI] [PubMed] [Google Scholar]
  • [17]. Lin, Y. S. , Tsai, Y. J. , Tsay, J. S. , Lin, J. K. , Factors affecting the levels of tea polyphenols and caffeine in tea leaves, J. Agric. Food Chem. 2003, 51, 1864–1873. [DOI] [PubMed] [Google Scholar]
  • [18]. Astill, R. , Birch, M. R. , Dacombe, C. , Humphrey, P. G. , Martin, P. T. , Factors affecting the caffeine and polyphenol contents of black and green tea infusions, J. Agric. Food Chem. 2001, 49, 5340–5347. [DOI] [PubMed] [Google Scholar]
  • [19]. Wang, H. , Helliwell, K. , You, X. , Isocratic elution system for the determination of catechins, caffeine and gallic acid in green tea using HPLC, Food Chem. 2000, 68, 115–121. [Google Scholar]
  • [20]. Friedman, M. , Kim, S.‐Y. , Lee, S.‐J. , Han, G.‐P. et al., Distribution of catechins, theaflavins, caffeine, and theobromine in 77 teas consumed in the United States, J. Food Sci. 2005, 70, C550–C559. [Google Scholar]
  • [21]. Friedman, M. , Levin, C. E. , Choi, S.‐H. , Kozukue, E. , Kozukue, N. , HPLC analysis of catechins, theaflavins, and alkaloids in commercial teas and green tea dietary supplements: Comparison of water and 80% ethanol/water extracts, J. Food Sci. 2006, 71, C328–C337. [Google Scholar]
  • [22]. Chou, C. C. , Lin, L. L. , Chung, K. T. , Antimicrobial activity of tea as affected by the degree of fermentation and manufacturing season, Int. J. Food Microbiol. 1999, 48, 125–130. [DOI] [PubMed] [Google Scholar]
  • [23]. Hamilton‐Miller, J. M. , Antimicrobial properties of tea (Camellia sinensis L.), Antimicrob. Agents Chemother. 1995, 39, 2375–2377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [24]. Diker, K. S. , Akan, M. , Hascelik, G. , Yurdakok, M. , The bacterial activity of tea against Campylobacter jejuni and Campylobacter coli, Lett. Appl. Microbiol. 1991, 12, 34–35. [Google Scholar]
  • [25]. Hara, Y. , Watanabe, M. , Sakaguchi, G. , The fate of Clostridium botulinum spores inoculated into tea drinks, Shokuhin Kogyo Gakkaishi 1989, 36, 375–379. [Google Scholar]
  • [26]. Hara, Y. , Luo, S. J. , Wickremasinghe, R. L. , Yamanishi, T. , Use and benefits of tea, Food Rev. Int. 1995, 11, 527–542. [Google Scholar]
  • [27]. Ahn, Y. J. , Kawamura, T. , Kim, M. , Yamamoto, T. , Mitsuoka, T. , Tea polyphenols: Selective growth inhibitors of Clostridium spp., Agric. Biol. Chem. 1991, 55, 1425–1426. [Google Scholar]
  • [28]. Sakanaka, S. , Juneja, L. R. , Taniguchi, M. , Antimicrobial effects of green tea polyphenols on thermophilic spore‐forming bacteria, J. Biosci. Bioeng. 2000, 90, 81–85. [DOI] [PubMed] [Google Scholar]
  • [29]. Cross, A. J. , Peters, U. , Kirsh, V. A. , Andriole, G. L. et al., A prospective study of meat and meat mutagens and prostate cancer risk, Cancer Res. 2005, 65, 11779–11784. [DOI] [PubMed] [Google Scholar]
  • [30]. Sinha, R. , Peters, U. , Cross, A. J. , Kulldorff, M. et al., Meat, meat cooking methods and preservation, and risk for colorectal adenoma, Cancer Res. 2005, 65, 8034–8041. [DOI] [PubMed] [Google Scholar]
  • [31]. Isogai, E. , Isogai, H. , Takeshi, K. , Nishikawa, T. , Protective effect of Japanese green tea extract on gnotobiotic mice infected with an Escherichia coli O157:H7 strain, Microbiol. Immunol. 1998, 42, 125–128. [DOI] [PubMed] [Google Scholar]
  • [32]. Isogai, E. , Isogai, H. , Hirose, K. , Hayashi, S. , Oguma, K. , In vivo synergy between green tea extract and levofloxacin against enterohemorrhagic Escherichia coli O157 infection, Curr. Microbiol 2001, 42, 248–251. [DOI] [PubMed] [Google Scholar]
  • [33]. Yam, T. S. , Shah, S. , Hamilton‐Miller, J. M. , Microbiological activity of whole and fractionated crude extracts of tea (Camellia sinensis), and of tea components, FEMS Microbiol. Lett. 1997, 152, 169–174. [DOI] [PubMed] [Google Scholar]
  • [34]. Yam, T. S. , Hamilton‐Miller, J. M. , Shah, S. , The effect of a component of tea (Camellia sinensis) on methicillin resistance, PBP2’ synthesis, and beta‐lactamase production in Staphylococcus aureus, J. Antimicrob. Chemother. 1998, 42, 211–216. [DOI] [PubMed] [Google Scholar]
  • [35]. Bandyopadhyay, D. , Chatterjee, T. K. , Dasgupta, A. , Lourduraja, J. , Dastidar, S. G. , In vitro and in vivo antimicrobial action of tea: The commonest beverage of Asia, Biol. Pharm. Bull. 2005, 28, 2125–2127. [DOI] [PubMed] [Google Scholar]
  • [36]. Taguri, T. , Tanaka, T. , Kouno, I. , Antimicrobial activity of 10 different plant polyphenols against bacteria causing food‐borne disease, Biol. Pharm. Bull. 2004, 27, 1965–1969. [DOI] [PubMed] [Google Scholar]
  • [37]. Si, W. , Gong, J. , Tsao, R. , Kalab, M. et al., Bioassay‐guided purification and identification of antimicrobial components in Chinese green tea extract, J. Chromatogr. A 2006, 1125, 204–210. [DOI] [PubMed] [Google Scholar]
  • [38]. Kim, S. , Ruengwilysup, C. , Fung, D. Y. , Antibacterial effect of water‐soluble tea extracts on foodborne pathogens in laboratory medium and in a food model, J. Food Prot. 2004, 67, 2608–2612. [DOI] [PubMed] [Google Scholar]
  • [39]. Shin, J. E. , Kim, J. M. , Bae, E. A. , Hyun, Y. J. , Kim, D. H. , In vitro inhibitory effect of flavonoids on growth, infection and vacuolation of Helicobacter pylori, Planta Med. 2005, 71, 197–201. [DOI] [PubMed] [Google Scholar]
  • [40]. Yee, Y. K. , Koo, M. W. , Szeto, M. L. , Chinese tea consumption and lower risk of Helicobacter infection, J. Gastroenterol. Hepatol. 2002, 17, 552–555. [DOI] [PubMed] [Google Scholar]
  • [41]. Yee, Y. K. , Koo, M. W. , Anti‐Helicobacter pylori activity of Chinese tea: In vitro study, Aliment. Pharmacol. Ther. 2000, 14, 635–638. [DOI] [PubMed] [Google Scholar]
  • [42]. Yanagawa, Y. , Yamamoto, Y. , Hara, Y. , Shimamura, T. , A combination effect of epigallocatechin gallate, a major compound of green tea catechins, with antibiotics on Helicobacter pylori growth in vitro, Curr. Microbiol 2003, 47, 244–249. [DOI] [PubMed] [Google Scholar]
  • [43]. Lee, K. M. , Yeo, M. , Choue, J. S. , Jin, J. H. et al., Protective mechanism of epigallocatechin‐3‐gallate against Helicobacter pylori‐induced gastric epithelial cytotoxicity via the blockage of TLR‐4 signaling, Helicobacter 2004, 9, 632–642. [DOI] [PubMed] [Google Scholar]
  • [44]. Matsunaga, K. , Klein, T. W. , Friedman, H. , Yamamoto, Y. , Legionella pneumophila replication in macrophages inhibited by selective immunomodulatory effects on cytokine formation by epigallocatechin gallate, a major form of tea catechins, Infect. Immun. 2001, 69, 3947–3953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [45]. Yamamoto, Y. , Matsunaga, K. , Friedman, H. , Protective effects of green tea catechins on alveolar macrophages against bacterial infections, Biofactors 2004, 21, 119–121. [DOI] [PubMed] [Google Scholar]
  • [46]. Anand, P. K. , Kaul, D. , Sharma, M. , Green tea polyphenol inhibits Mycobacterium tuberculosis survival within human macrophages, Int. J. Biochem. Cell Biol. 2006, 38, 600–609. [DOI] [PubMed] [Google Scholar]
  • [47]. Chosa, H. , Toda, M. , Okubo, S. , Hara, Y. , Shimamura, T. , Antimicrobial and microbicidal activities of tea and catechins against Mycoplasma, Kansenshogaku Zasshi 1992, 66, 606–611. [DOI] [PubMed] [Google Scholar]
  • [48]. Blanco, A. R. , La Terra Mule, S. , Babini, G. , Garbisa, S. et al., (–)‐Epigallocatechin‐3‐gallate inhibits gelatinase activity of some bacterial isolates from ocular infection, and limits their invasion through gelatine, Biochim. Biophys. Acta 2003, 1620, 273–281. [DOI] [PubMed] [Google Scholar]
  • [49]. Balakrishnan, M. , Simmonds, R. S. , Tagg, J. R. , Dental caries is a preventable infectious disease, Aust. Dent. J. 2000, 45, 235–245. [DOI] [PubMed] [Google Scholar]
  • [50]. Zhang, J. , Kashket, S. , Inhibition of salivary amylase by black and green teas and their effects on the intraoral hydrolysis of starch, Caries Res. 1998, 32, 233–238. [DOI] [PubMed] [Google Scholar]
  • [51]. Hirasawa, M. , Takada, K. , Otake, S. , Inhibition of acid production in dental plaque bacteria by green tea catechins, Caries Res. 2006, 40, 265–270. [DOI] [PubMed] [Google Scholar]
  • [52]. Yu, H. , Oho, T. , Tagomori, S. , Morioka, T. , Anticariogenic effects of green tea, Fukuoka Igaku Zasshi 1992, 83, 174–180. [PubMed] [Google Scholar]
  • [53]. Linke, H. A. , LeGeros, R. Z. , Black tea extract and dental caries formation in hamsters, Int. J. Food Sci. Nutr. 2003, 54, 89–95. [DOI] [PubMed] [Google Scholar]
  • [54]. Xiao, Y. , Liu, T. , Zhan, L. , Zhou, X. , The effects of tea polyphenols on the adherence of cariogenic bacterium to the collagen in vitro, Hua Xi Kou Qiang Yi Xue Za Zhi 2000, 18, 340–342. [PubMed] [Google Scholar]
  • [55]. Matsumoto, M. , Minami, T. , Sasaki, H. , Sobue, S. et al., Inhibitory effects of oolong tea extract on caries‐inducing properties of mutans streptococci, Caries Res. 1999, 33, 441–445. [DOI] [PubMed] [Google Scholar]
  • [56]. Xiao, Y. , Liu, T. , Huang, Z. , Zhou, X. , Li, G. , The in vitro study of the effects of 11 kinds of traditional Chinese medicine on the growth and acid production of Actinomyces viscosus, Hua Xi Yi Ke Da Xue Xue Bao 2002, 33, 253–255. [PubMed] [Google Scholar]
  • [57]. Touyz, L. Z. , Amsel, R. , Anticariogenic effects of black tea (Camellia sinensis) in caries prone‐rats, Quintessence Int. 2001, 32, 647–650. [PubMed] [Google Scholar]
  • [58]. Yun, J. H. , Pang, E. K. , Kim, C. S. , Yoo, Y. J. et al., Inhibitory effects of green tea polyphenol (–)‐epigallocatechin gallate on the expression of matrix metalloproteinase‐9 and on the formation of osteoclasts, J. Periodontal Res. 2004, 39, 300–307. [DOI] [PubMed] [Google Scholar]
  • [59]. Ciraj, A. M. , Sulaim, J. , Mamatha, B. , Gopalkrishna, B. K. , Shivananda, P. G. , Antibacterial activity of black tea (Camelia sinensis) extract against Salmonella serotypes causing enteric fever, Indian J. Med. Sci. 2001, 55, 376–381. [PubMed] [Google Scholar]
  • [60]. Stewart, G. C. , Staphylococcus aureus, in: Fratamico, P. M., Bhunia, A. K., Smith, J. L. (Eds.), Foodborne Pathogens: Microbiology and Molecular Biology, Caister Academic Press, Norwich, UK 2005, pp. 273–284.
  • [61]. Toda, M. , Okubo, S. , Hara, Y. , Shimamura, T. , Antibacterial and bactericidal activities of tea extracts and catechins against methicillin resistant Staphylococcus aureus, Nippon Saikingaku Zasshi 1991, 46, 839–845. [DOI] [PubMed] [Google Scholar]
  • [62]. Yoda, Y. , Hu, Z. Q. , Zhao, W. H. , Shimamura, T. , Different susceptibilities of Staphylococcus and Gram‐negative rods to epigallocatechin gallate, J. Infect. Chemother. 2004, 10, 55–58. [DOI] [PubMed] [Google Scholar]
  • [63]. Hu, Z. Q. , Zhao, W. H. , Yoda, Y. , Asano, N. et al., Additive, indifferent and antagonistic effects in combinations of epigallocatechin gallate with 12 non‐β‐lactam antibiotics against methicillin‐resistant Staphylococcus aureus, J. Antimicrob. Chemother. 2002, 50, 1051–1054. [DOI] [PubMed] [Google Scholar]
  • [64]. Zhao, W. H. , Hu, Z. Q. , Okubo, S. , Hara, Y. , Shimamura, T. , Mechanism of synergy between epigallocatechin gallate and beta‐lactams against methicillin‐resistant Staphylococcus aureus, Antimicrob. Agents Chemother. 2001, 45, 1737–1742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [65]. Hatano, T. , Kusuda, M. , Hori, M. , Shiota, S. et al., Theasinensin A, a tea polyphenol formed from (–)‐epigallocatechin gallate, suppresses antibiotic resistance of methicillin‐resistant Staphylococcus aureus, Planta Med. 2003, 69, 984–989. [DOI] [PubMed] [Google Scholar]
  • [66]. Stapleton, P. D. , Shah, S. , Anderson, J. C. , Hara, Y. et al., Modulation of beta‐lactam resistance in Staphylococcus aureus by catechins and gallates, Int. J. Antimicrob. Agents 2004, 23, 462–467. [DOI] [PubMed] [Google Scholar]
  • [67]. Stapleton, P. D. , Shah, S. , Hara, Y. , Taylor, P. W. , Potentiation of catechin gallate‐mediated sensitization of Staphylococcus aureus to oxacillin by nongalloylated catechins, Antimicrob. Agents Chemother. 2006, 50, 752–755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [68]. Sudano Roccaro, A. , Blanco, A. R. , Giuliano, F. , Rusciano, D. , Enea, V. , Epigallocatechin‐gallate enhances the activity of tetracycline in staphylococci by inhibiting its efflux from bacterial cells, Antimicrob. Agents Chemother. 2004, 48, 1968–1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [69]. Simonetti, G. , Simonetti, N. , Villa, A. , Increased microbicidal activity of green tea (Camellia sinensis) in combination with butylated hydroxyanisole, J. Chemother. 2004, 16, 122–127. [DOI] [PubMed] [Google Scholar]
  • [70]. Lee, Y. S. , Han, C. H. , Kang, S. H. , Lee, S. J. et al., Synergistic effect between catechin and ciprofloxacin on chronic bacterial prostatitis rat model, Int. J. Urol. 2005, 12, 383–389. [DOI] [PubMed] [Google Scholar]
  • [71]. Tiwari, T. P. , Bharti, S. K. , Kaur, H. D. , Dikshit, R. P. , Hoondal, G. S. , Synergistic antimicrobial activity of tea & antibiotics, Indian J. Med. Res. 2005, 122, 80–84. [PubMed] [Google Scholar]
  • [72]. Yang, C. Y. , Pang, J. C. , Kao, S. S. , Tsen, H. Y. , Enterotoxigenicity and cytotoxicity of Bacillus thuringiensis strains and development of a process for Cry1Ac production, J. Agric. Food Chem. 2003, 51, 100–105. [DOI] [PubMed] [Google Scholar]
  • [73]. Yang, S. P. , Raner, G. M. , Cytochrome P450 expression and activities in human tongue cells and their modulation by green tea extract, Toxicol. Appl. Pharmacol. 2005, 202, 140–150. [DOI] [PubMed] [Google Scholar]
  • [74]. Caturla, N. , Vera‐Samper, E. , Villalain, J. , Mateo, C. R. , Micol, V. , The relationship between the antioxidant and the antibacterial properties of galloylated catechins and the structure of phospholipid model membranes, Free Radic. Biol. Med. 2003, 34, 648–662. [DOI] [PubMed] [Google Scholar]
  • [75]. Nakayama, T. , Hashimoto, T. , Kajiya, K. , Kumazawa, S. , Affinity of polyphenols for lipid bilayers, Biofactors 2000, 13, 147–151. [DOI] [PubMed] [Google Scholar]
  • [76]. Zhao, W. H. , Hu, Z. Q. , Hara, Y. , Shimamura, T. , Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase‐producing Staphylococcus aureus, Antimicrob. Agents Chemother. 2002, 46, 2266–2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [77]. Arakawa, H. , Maeda, M. , Okubo, S. , Shimamura, T. , Role of hydrogen peroxide in bactericidal action of catechin, Biol. Pharm. Bull. 2004, 27, 277–281. [DOI] [PubMed] [Google Scholar]
  • [78]. Hayakawa, F. , Ishizu, Y. , Hoshino, N. , Yamaji, A. et al., Prooxidative activities of tea catechins in the presence of Cu2+, Biosci. Biotechnol. Biochem. 2004, 68, 1825–1830. [DOI] [PubMed] [Google Scholar]
  • [79]. Fukai, K. , Ishigami, T. , Hara, Y. , Antibacterial activity of tea polyphenols against phytopathogenic bacteria, Agric. Biol. Chem. 1991, 55, 1895–1897. [Google Scholar]
  • [80]. Okada, F. , Furuya, K. , Inhibitory effect of tea catechins on some plant virus diseases, Jap. Tea Res. Sta. Stud. Tea 1971, 42, 39–46. [Google Scholar]
  • [81]. Okada, F. , Antiviral effects of tea catechins and black tea theaflavins on plant viruses, Jpn. Agric. Res. Q. 1978, 12, 27–32. [Google Scholar]
  • [82]. Kubo, I. , Muroi, H. , Himejima, M. , Antimicrobial activity of green tea flavor components and their combination effects, J. Agric. Food Chem. 1992, 40, 245–248. [Google Scholar]
  • [83]. Yao, S. , Tan, H. , Zhang, H. , Su, X. , Wei, W. , Bulk acoustic bacterial growth sensor applied to analysis of antimicrobial properties of tea, Biotechnol. Prog. 1998, 14, 639–644. [DOI] [PubMed] [Google Scholar]
  • [84]. Dell'Aica, I. , Donà, M. , Tonello, F. , Piris, A. et al., Potent inhibitors of anthrax lethal factor from green tea, EMBO Rep. 2004, 5, 418–422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [85]. Friedman, M. , Grosjean, O. K. , Zahnley, J. C. , Inactivation of metallo‐enzymes by food constituents, Food Chem. Toxicol. 1986, 24, 897–902. [DOI] [PubMed] [Google Scholar]
  • [86]. Benelli, R. , Vene, R. , Bisacchi, D. , Garbisa, S. , Albini, A. , Anti‐invasive effects of green tea polyphenol epigallocatechin‐3‐gallate (EGCG), a natural inhibitor of metallo and serine proteases, Biol. Chem. 2002, 383, 101–105. [DOI] [PubMed] [Google Scholar]
  • [87]. Cabrera, C. , Gimenez, R. , Lopez, M. C. , Determination of tea components with antioxidant activity, J. Agric. Food Chem. 2003, 51, 4427–4435. [DOI] [PubMed] [Google Scholar]
  • [88]. Satoh, E. , Ishii, T. , Shimizu, Y. , Sawamura, S. , Nishimura, M. , A mechanism of the thearubigin fraction of black tea (Camellia sinensis) extract protecting against the effect of tetanus toxin, J. Toxicol. Sci. 2002, 27, 441–447. [DOI] [PubMed] [Google Scholar]
  • [89]. Satoh, E. , Ishii, T. , Shimizu, Y. , Sawamura, S. , Nishimura, M. , The mechanism underlying the protective effect of the thearubigin fraction of black tea (Camellia sinensis) extract against the neuromuscular blocking action of botulinum neurotoxins, Pharmacol. Toxicol. 2002, 90, 199–202. [DOI] [PubMed] [Google Scholar]
  • [90]. Sawamura, S. , Sakane, I. , Satoh, E. , Ishii, T. et al., Isolation and determination of an antidote for botulinum neurotoxin from black tea extract, Nippon Yakurigaku Zasshi 2002, 120, 116P–118P. [PubMed] [Google Scholar]
  • [91]. Friedman, M. A. , Smith, G. A. , Inactivation of quercetin mutagenicity, Food Chem. Toxicol. 1984, 22, 817–820, 823. [DOI] [PubMed] [Google Scholar]
  • [92]. Toda, M. , Okubo, S. , Ikigai, H. , Suzuki, T. et al., The protective activity of tea catechins against experimental infection by Vibrio cholerae O1, Microbiol. Immunol. 1992, 36, 999–1001. [DOI] [PubMed] [Google Scholar]
  • [93]. Toda, M. , Okubo, S. , Ikigai, H. , Suzuki, T. et al., The protective activity of tea against infection by Vibrio cholerae O1, J. Appl. Bacteriol. 1991, 70, 109–112. [DOI] [PubMed] [Google Scholar]
  • [94]. Morinaga, N. , Iwamaru, Y. , Yahiro, K. , Tagashira, M. et al., Differential activities of plant polyphenols on the binding and internalization of cholera toxin in vero cells, J. Biol. Chem. 2005, 280, 23303–23309. [DOI] [PubMed] [Google Scholar]
  • [95]. Shimamura, T. , Watanabe, S. , Sasaki, S. , Inhibition of cholera toxin production by thiols in Vibrio cholerae, Infect. Immun. 1986, 53, 700–701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [96]. Friedman, M. , Brandon, D. L. , Nutritional and health benefits of soy proteins, J. Agric. Food Chem. 2001, 49, 1069–1086. [DOI] [PubMed] [Google Scholar]
  • [97]. Friedman, M. , Application of the S‐pyridylethylation reaction to the elucidation of the structures and functions of proteins, J. Protein Chem. 2001, 20, 431–453. [DOI] [PubMed] [Google Scholar]
  • [98]. Friedman, M. , The Chemistry and Biochemistry of the Sulfhydryl Group in Amino Acids, Peptides, and Proteins, Chapter 8, Pergamon Press, Oxford, UK 1973.
  • [99]. Yahiro, K. , Shirasaka, D. , Tagashira, M. , Wada, A. et al., Inhibitory effects of polyphenols on gastric injury by Helicobacter pylori VacA toxin, Helicobacter 2005, 10, 231–239. [DOI] [PubMed] [Google Scholar]
  • [100]. Watanabe, M. , Endoh, M. , Takeo, T. , Inactivation and toxoiding of biologically‐active components of Bordetella pertussis by tea catechins, Yakugaku Zasshi 1998, 118, 415–422. [DOI] [PubMed] [Google Scholar]
  • [101]. Watanabe, M. , Funaishi, K. , Takeo, T. , Endoh, M. , Efficacy of pertussis vaccines consisted of antigens detoxified with tea‐leaf catechins, Vaccine 2000, 19, 1204–1210. [DOI] [PubMed] [Google Scholar]
  • [102]. Horiuchi, Y. , Toda, M. , Okubo, S. , Hara, Y. , Shimamura, T. , Protective effect of tea catechins against Bordella pertussis, Kansenshogaku Zasshi 1992, 66, 599–605. [DOI] [PubMed] [Google Scholar]
  • [103]. Hung, Y. C. , Sava, V. , Hong, M. Y. , Huang, G. S. , Inhibitory effects on phospholipase A2 and antivenin activity of melanin extracted from Thea sinensis Linn, Life Sci. 2004, 74, 2037–2047. [DOI] [PubMed] [Google Scholar]
  • [104]. Hisano, M. , Yamaguchi, K. , Inoue, Y. , Ikeda, Y. et al., Inhibitory effect of catechin against the superantigen staphylococcal enterotoxin B (SEB), Arch. Dermatol. Res. 2003, 295, 183–189. [DOI] [PubMed] [Google Scholar]
  • [105]. Satoh, E. , Ishii, T. , Shimizu, Y. , Sawamura, S. , Nishimura, M. , Black tea extract, thearubigin fraction, counteracts the effects of botulinum neurotoxins in mice, Exp. Biol. Med. 2001, 226, 577–580. [DOI] [PubMed] [Google Scholar]
  • [106]. Satoh, E. , Ethyl acetate extract from black tea prevents neuromuscular blockade by botulinum neurotoxin type A in vitro, Int. J. Food Sci. Nutr. 2005, 56, 543–550. [DOI] [PubMed] [Google Scholar]
  • [107]. Okubo, S. , Sasaki, T. , Hara, Y. , Mori, F. , Shimamura, T. , Bactericidal and anti‐toxin activities of catechin on enterohemorrhagic Escherichia coli, Kansenshogaku Zasshi 1998, 72, 211–217. [DOI] [PubMed] [Google Scholar]
  • [108]. Sugita‐Konishi, Y. , Hara‐Kudo, Y. , Amano, F. , Okubo, T. et al., Epigallocatechin gallate and gallocatechin gallate in green tea catechins inhibit extracellular release of Vero toxin from enterohemorrhagic Escherichia coli O157:H7, Biochim. Biophys. Acta 1999, 1472, 42–50. [DOI] [PubMed] [Google Scholar]
  • [109]. Ikigai, H. , Nakae, T. , Hara, Y. , Shimamura, T. , Bactericidal catechins damage the lipid bilayers, Biochim. Biophys. Acta 1993, 1147, 132–136. [DOI] [PubMed] [Google Scholar]
  • [110]. Greenberg, R. N. , Dunn, J. A. , Guerrant, R. L. , Reduction of the secretory response to Escherichia coli heat‐stable enterotoxin by thiol and disulfide compounds, Infect. Immun. 1983, 41, 174–180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [111]. Weber, J. M. , Ruzindana‐Umunyana, A. , Imbeault, L. , Sircar, S. , Inhibition of adenovirus infection and adenain by green tea catechins, Antiviral Res. 2003, 58, 167–173. [DOI] [PubMed] [Google Scholar]
  • [112]. de Siqueira, R. S. , Dodd, C. E. R. , Rees, C. E. D. , Evaluation of the natural virucidal activity of teas for use in the phage amplification assay, Int. J. Food Microbiol. 2006, 111, 259–262. [DOI] [PubMed] [Google Scholar]
  • [113]. Clark, K. J. , Grant, P. G. , Sarr, A. B. , Belakere, J. R. et al., An in vitro study of theaflavins extracted from black tea to neutralize bovine rotavirus and bovine coronavirus infections, Vet. Microbiol. 1998, 63, 147–157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [114]. Chang, L. K. , Wei, T. T. , Chiu, Y. F. , Tung, C. P. et al., Inhibition of Epstein‐Barr virus lytic cycle by (–)‐epigallocatechin gallate, Biochem. Biophys. Res. Commun. 2003, 301, 1062–1068. [DOI] [PubMed] [Google Scholar]
  • [115]. Savi, L. A. , Barardi, C. R. , Simoes, C. M. , Evaluation of antiherpetic activity and genotoxic effects of tea catechin derivatives, J. Agric. Food Chem. 2006, 54, 2552–2557. [DOI] [PubMed] [Google Scholar]
  • [116]. Cheng, H. Y. , Lin, C. C. , Lin, T. C. , Antiviral properties of prodelphinidin B‐2 3′‐O‐gallate from green tea leaf, Antivir. Chem. Chemother. 2002, 13, 223–229. [DOI] [PubMed] [Google Scholar]
  • [117]. Friedman, M. , Potato glycoalkaloids and metabolites: Roles in the plant and in the diet, J. Agric. Food Chem. 2006, 54, 8655–8681. [DOI] [PubMed] [Google Scholar]
  • [118]. Liu, S. , Lu, H. , Zhao, Q. , He, Y. et al., Theaflavin derivatives in black tea and catechin derivatives in green tea inhibit HIV‐1 entry by targeting gp41, Biochim. Biophys. Acta 2005, 1723, 270–281. [DOI] [PubMed] [Google Scholar]
  • [119]. Yamaguchi, K. , Honda, M. , Ikigai, H. , Hara, Y. , Shimamura, T. , Inhibitory effects of (–)‐epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV‐1), Antiviral Res. 2002, 53, 19–34. [DOI] [PubMed] [Google Scholar]
  • [120]. Hamza, A. , Zhan, C. G. , How can (–)‐epigallocatechin gallate from green tea prevent HIV‐1 infection? Mechanistic insights from computational modeling and the implication for rational design of anti‐HIV‐1 entry inhibitors, J. Phys. Chem. B Condens. Matter Mater. Surf. Interfaces Biophys. 2006, 110, 2910–2917. [DOI] [PubMed] [Google Scholar]
  • [121]. Nakayama, M. , Suzuki, K. , Toda, M. , Okubo, S. et al., Inhibition of infectivity of influenza virus by tea polyphenols, Antiviral Res. 1993, 21, 289–299. [DOI] [PubMed] [Google Scholar]
  • [122]. Song, J. M. , Lee, K. H. , Seong, B. L. , Antiviral effect of catechins in green tea on influenza virus, Antiviral Res. 2005, 68, 66–74. [DOI] [PubMed] [Google Scholar]
  • [123]. Okubo, S. , Toda, M. , Hara, Y. , Shimamura, T. , Antifungal and fungicidal activities of tea extracts and catechins against Trichophyton, Nippon Saikingaku Zasshi 1991, 46, 509–514. [DOI] [PubMed] [Google Scholar]
  • [124]. Hirasawa, M. , Takada, K. , Multiple effects of green tea catechin on the antifungal activity of antimycotics against Candida albicans, J. Antimicrob. Chemother. 2004, 53, 225–229. [DOI] [PubMed] [Google Scholar]
  • [125]. Henning, S. M. , Niu, Y. , Liu, Y. , Lee, N. H. et al., Bioavailability and antioxidant effect of epigallocatechin gallate administered in purified form versus as green tea extract in healthy individuals, J. Nutr. Biochem. 2005, 16, 610–616. [DOI] [PubMed] [Google Scholar]
  • [126]. Konishi, Y. , Kobayashi, S. , Shimizu, M. , Tea polyphenols inhibit the transport of dietary phenolic acids mediated by the monocarboxylic acid transporter (MCT) in intestinal Caco‐2 cell monolayers, J. Agric. Food Chem. 2003, 51, 7296–7302. [DOI] [PubMed] [Google Scholar]
  • [127]. Lee, M. J. , Maliakal, P. , Chen, L. , Meng, X. et al., Pharmacokinetics of tea catechins after ingestion of green tea and (–)‐epigallocatechin‐3‐gallate by humans: Formation of different metabolites and individual variability, Cancer Epidemiol. Biomarkers Prev. 2002, 11, 1025–1032. [PubMed] [Google Scholar]
  • [128]. Zhu, M. , Chen, Y. , Li, R. C. , Oral absorption and bioavailability of tea catechins, Planta Med. 2000, 66, 444–447. [DOI] [PubMed] [Google Scholar]
  • [129]. Chu, K. O. , Wang, C. C. , Chu, C. Y. , Chan, K. P. et al., Pharmacokinetic studies of green tea catechins in maternal plasma and fetuses in rats, J. Pharm. Sci. 2006, 95, 1372–1381. [DOI] [PubMed] [Google Scholar]
  • [130]. Chow, H. H. , Cai, Y. , Alberts, D. S. , Hakim, I. et al., Phase I pharmacokinetic study of tea polyphenols following single‐dose administration of epigallocatechin gallate and Polyphenon E, Cancer Epidemiol. Biomarkers Prev. 2001, 10, 53–58. [PubMed] [Google Scholar]
  • [131]. Chow, H. H. , Cai, Y. , Hakim, I. A. , Crowell, J. A. et al., Pharmacokinetics and safety of green tea polyphenols after multiple‐dose administration of epigallocatechin gallate and Polyphenon E in healthy individuals, Clin. Cancer Res. 2003, 9, 3312–3319. [PubMed] [Google Scholar]
  • [132]. Chow, H. H. , Hakim, I. A. , Vining, D. R. , Crowell, J. A. et al., Effects of dosing conditions on the oral bioavailability of green tea catechins after single‐dose administration of Polyphenon E in healthy individuals, Clin. Cancer Res. 2005, 11, 4627–4633. [DOI] [PubMed] [Google Scholar]
  • [133]. Warden, B. A. , Smith, L. S. , Beecher, G. R. , Balentine, D. A. , Clevidence, B. A. , Catechins are bioavailable in men and women drinking black tea throughout the day, J. Nutr. 2001, 131, 1731–1737. [DOI] [PubMed] [Google Scholar]
  • [134]. Van Amelsvoort, J. M. , Van Hof, K. H. , Mathot, J. N. , Mulder, T. P. et al., Plasma concentrations of individual tea catechins after a single oral dose in humans, Xenobiotica 2001, 31, 891–901. [DOI] [PubMed] [Google Scholar]
  • [135]. van het Hof, K. H. , Kivits, G. A. , Weststrate, J. A. , Tijburg, L. B. , Bioavailability of catechins from tea: The effect of milk, Eur. J. Clin. Nutr. 1998, 52, 356–359. [DOI] [PubMed] [Google Scholar]
  • [136]. Yang, C. S. , Lee, M. J. , Chen, L. , Human salivary tea catechin levels and catechin esterase activities: Implication in human cancer prevention studies, Cancer Epidemiol. Biomarkers Prev. 1999, 8, 83–89. [PubMed] [Google Scholar]
  • [137]. Swezey, R. R. , Aldridge, D. E. , LeValley, S. E. , Crowell, J. A. et al., Absorption, tissue distribution and elimination of 4‐[(3)h)]‐epigallocatechin gallate in beagle dogs, Int. J. Toxicol. 2003, 22, 187–193. [DOI] [PubMed] [Google Scholar]
  • [138]. Doucas, H. , Garcea, G. , Neal, C. P. , Manson, M. M. , Berry, D. P. , Chemoprevention of pancreatic cancer: A review of the molecular pathways involved, and evidence for the potential for chemoprevention, Pancreatology 2006, 6, 429–439. [DOI] [PubMed] [Google Scholar]
  • [139]. Walsh, C. , Antibiotics, Actions, Origins, Resistance, ASM Press, Washington DC 2003.
  • [140]. Friedman, M. , Chemistry, nutrition, and microbiology of D‐amino acids, J. Agric. Food Chem. 1999, 47, 3457–3479. [DOI] [PubMed] [Google Scholar]
  • [141]. Rojas‐Grau, M. A. , Avena‐Bustillos, R. J. , Friedman, M. , Henika, P. R. et al., Mechanical, barrier, and antimicrobial properties of apple puree edible films containing plant essential oils, J. Agric. Food Chem. 2006, 54, 9262–9267. [DOI] [PubMed] [Google Scholar]
  • [142]. Setiawan, V. W. , Zhang, Z. F. , Yu, G. P. , Lu, Q. Y. et al., Protective effect of green tea on the risks of chronic gastritis and stomach cancer, Int. J. Cancer 2001, 92, 600–604. [DOI] [PubMed] [Google Scholar]
  • [143]. Matsunaga, K. , Klein, T. W. , Friedman, H. , Yamamoto, Y. , Epigallocatechin gallate, a potential immunomodulatory agent of tea components, diminishes cigarette smoke condensate‐induced suppression of anti‐Legionella pneumophila activity and cytokine responses of alveolar macrophages, Clin. Diagn. Lab. Immunol. 2002, 9, 864–871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [144]. Rogers, J. , Perkins, I. , van Olphen, A. , Burdash, N. et al., Epigallocatechin gallate modulates cytokine production by bone marrow‐derived dendritic cells stimulated with lipopolysaccharide or muramyldipeptide, or infected with Legionella pneumophila, Exp. Biol. Med. 2005, 230, 645–651. [DOI] [PubMed] [Google Scholar]
  • [145]. Ikigai, H. , Toda, M. , Okubo, S. , Hara, Y. , Shimamura, T. , Relationship between the anti‐hemolysin activity and the structures of catechins and theaflavins, Nippon Saikingaku Zasshi 1990, 45, 913–919. [DOI] [PubMed] [Google Scholar]
  • [146]. Toda, M. , Okubo, S. , Ikigai, H. , Shimamura, T. , Antibacterial and anti‐hemolysin activities of tea catechins and their structural relatives, Nippon Saikingaku Zasshi 1990, 45, 561–566. [DOI] [PubMed] [Google Scholar]
  • [147]. Ganguly, N. K. , Kaur, T. , Mechanism of action of cholera toxin & other toxins, Indian J. Med. Res. 1996, 104, 28–37. [PubMed] [Google Scholar]
  • [148]. Mukoyama, A. , Ushijima, H. , Nishimura, S. , Koike, H. et al., Inhibition of rotavirus and enterovirus infections by tea extracts, Jpn. J. Med. Sci. Biol. 1991, 44, 181–186. [DOI] [PubMed] [Google Scholar]
  • [149]. Gu, Y. , Gu, Q. , Kodama, H. , Mueller, W. E. , Ushijima, H. , Development of antirotavirus agents in Asia, Pediatr. Int. 2000, 42, 440–447. [DOI] [PubMed] [Google Scholar]
  • [150]. Kawai, K. , Tsuno, N. H. , Kitayama, J. , Okaji, Y. et al., Epigallocatechin gallate, the main component of tea polyphenol, binds to CD4 and interferes with gp120 binding, J. Allergy Clin. Immunol. 2003, 112, 951–957. [DOI] [PubMed] [Google Scholar]
  • [151]. Imanishi, N. , Tuji, Y. , Katada, Y. , Maruhashi, M. et al., Additional inhibitory effect of tea extract on the growth of influenza A and B viruses in MDCK cells, Microbiol. Immunol. 2002, 46, 491–494. [DOI] [PubMed] [Google Scholar]
  • [152]. Shukla, H. D. , Sharma, S. K. , Clostridium botulinum, A bug with a beauty and a weapon, Crit. Rev. Microbiol. 2005, 31, 11–18. [DOI] [PubMed] [Google Scholar]
  • [153]. Lee, H. C. , Jemmer, A. M. , Low, C. S. , Lee, Y. K. , Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res. Microbiol. 2006, 157, 876–884. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Nutrition & Food Research are provided here courtesy of Wiley

RESOURCES