Summary
Peptide chain termination occurs when a stop codon is decoded by a release factor. In Escherichia coli two codon‐specific release factors (RF1 and RF2) direct the termination of protein synthesis, while in eukaryotes a single factor is required. The E. coli factors have been purified and their genes isolated. A combination of protein and DNA sequence data reveal that the RFs are structurally similar and that RF2 is encoded in two reading frames. Frame‐shifting from one reading frame to the next occurs at a rate of 50%, is regulated by the RF2‐specific stop codon UGA, and involves the direct interaction of the RF2 mRNA with the 3’end of the 16S rRNA. The RF genes are located in two separate operons, with the RF1 gene located at 26.7 min and the RF2 gene at 62.3 min on the chromosome map. Ribosomal binding studies place the RF‐binding region at the interface between the ribosomal subunits. A possible mechanism of stop‐codon recognition is reviewed.
References
- Beaudet, A.L. , and Caskey, C.T. (1970) Nature 227: 38–40. [DOI] [PubMed] [Google Scholar]
- Böck, A. , and Stadtman, T. (1988) Biofactors 1: 245–250. [PubMed] [Google Scholar]
- Brierley, I. et al. (1989) Cell 57: 537–547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capecchi, M.R. (1967) Proc Natl Acad Sci USA 58: 1144–1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capecchi, M.R. , and Klein, H.A. (1969) Cold Spring Harbor Symp Quant Biol 34: 469–477. [DOI] [PubMed] [Google Scholar]
- Caskey, C.T. et al. (1968) Science 162: 135–138. [DOI] [PubMed] [Google Scholar]
- Caskey, C.T. et al. (1977) J Biol Chem 252: 4435–4437. [PubMed] [Google Scholar]
- Caskey, C.T. et al. (1984) J Bacteriol 158: 364–368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Craigen, W.J. , and Caskey, C.T. (1986) Nature 322: 273–275. [DOI] [PubMed] [Google Scholar]
- Craigen, W.J. , and Caskey, C.T. (1987a) Biochimie 69: 1031–1041. [DOI] [PubMed] [Google Scholar]
- Craigen, W.J. , and Caskey, C.T. (1987b) Cell 50: 1–2. [DOI] [PubMed] [Google Scholar]
- Craigen, W.J. et al (1985) Proc Natl Acad Sci USA 82: 3616–3620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curran, J. , and Yarus, M. (1988) J Mol Biol 203: 75–83. [DOI] [PubMed] [Google Scholar]
- Curran, J. , and Yarus, M. (1989) J Mol Biol 209: 65–77. [DOI] [PubMed] [Google Scholar]
- Davidoff‐Abelson, R. , and Mindich, L. (1979) Mol Gen Genet 159: 161–169. [DOI] [PubMed] [Google Scholar]
- Elliott, T. (1989) J Bacteriol 171: 3948–3960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gampel, A. , and Tzagoloff, A. (1989) Proc Natl Acad Sci USA 86: 6023–6027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ganoza, M.C. (1966) Cold Spring Harbor Symp Quant Biol 31: 273–276. [DOI] [PubMed] [Google Scholar]
- Goldstein, J.L. et al. (1970) Proc Natl Acad Sci USA 67: 99–106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Llan, J. (1973) J Mol Biol 77: 437–448. [DOI] [PubMed] [Google Scholar]
- Innanen, V.T. , and Nicholls, D.M. (1973) Biochim Biophys Acta 324: 533. [DOI] [PubMed] [Google Scholar]
- Kawakami, K. et al. (1988a) Proc Natl Acad Sci USA 85: 5620–5624. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawakami, K. et al. (1988b) J Bacteriol 170: 5378–5381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawakami, K. et al (1989) Mol Gen Genet 219: 333–340. [DOI] [PubMed] [Google Scholar]
- Lang, A. et al. (1989) J Biochem 180: 547–554. [DOI] [PubMed] [Google Scholar]
- Lee, C.C. et al (1987) J Biol Chem 262: 3548–3552. [PubMed] [Google Scholar]
- Lee, C.C. et al. (1988) J Bacteriol 170: 4537–4541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milman, G. et al. (1969) Proc Natl Acad Sci USA 63: 183–190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murgola, E. J. et al. (1988) Proc Natl Acad Sci US/A 85: 4162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ratliff, J.M. (1979) PhD Thesis, Baylor College of Medicine, USA.
- Reddington, M.A. , and Tate, W.P. (1979) FEBS Lett 97: 335. [DOI] [PubMed] [Google Scholar]
- Reyden, S.M. , and Isaksson, L.A. (1983) Mol Gen Genet 193: 38–45. [DOI] [PubMed] [Google Scholar]
- Roesser, J.R. , and Yanofsky, C. (1988) J Biol Chem 263: 14251–14255. [PubMed] [Google Scholar]
- Roesser, J. et al. (1989) J Biol Chem 264: 12284–12288. [PubMed] [Google Scholar]
- Ryden, S.M. et al. (1986) J Bacteriol 168: 1066–1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scolnik, E. et al. (1968) Proc Natl Acad Sci USA 61: 768–774. 4879404 [Google Scholar]
- Shine, J. , and Dalgarno, L. (1974) Proc Natl Acad Sci USA 71: 1342–1346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tate, W.P. et al. (1973) Proc Natl Acad Sci USA 70: 2350–2355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tate, W.P. et al. (1975) J Mol Biol 93: 375–389. [DOI] [PubMed] [Google Scholar]
- Tate, W.P. et al. (1983a) J Biol Chem 258: 10360–10365. [PubMed] [Google Scholar]
- Tate, W.P. et al. (1983b) J Biol Chem 258: 12816–12820. [PubMed] [Google Scholar]
- Tate, W.P. et al. (1988) Biochem Intl 17: 179–186. [PubMed] [Google Scholar]
- Thomas, M.S. , and Nomura, M. (1987) Nucl Acids Res 15: 3085–3096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompkins, R. et al. (1970) Proc Natl Acad Sci USA 65: 702–708. 4910855 [Google Scholar]
- Trifonov, E.N. (1987) J Mol Biol 194: 643–652. [DOI] [PubMed] [Google Scholar]
- Verkamp, E. , and Chelm, B. (1989) J Bacteriol 171: 4728–4735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss, R. et al. (1984) J Bacteriol 158: 362–364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss, R. et al. (1987) Cold Spring Harbor Symp Quant Biol 52: 687–693. [DOI] [PubMed] [Google Scholar]
- Weiss, R. et al. (1988) EMBO J 7: 1503–1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yano, R. , and Yura, T. (1989) J Bacteriol 171: 1712–1717. [DOI] [PMC free article] [PubMed] [Google Scholar]