Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2013 Nov 14;40(6):425–433. doi: 10.1111/j.1348-0421.1996.tb01089.x

Comparison of the Amino Acid Sequence and Phylogenetic Analysis of the Peplomer, Integral Membrane and Nucleocapsid Proteins of Feline, Canine and Porcine Coronaviruses

Kenji Motokawa 1, Tsutomu Hohdatsu 1,, Hiroshi Hashimoto 2, Hiroyuki Koyama 1
PMCID: PMC7168433  PMID: 8839428

Abstract

Complete nucleotide sequences were determined by cDNA cloning of peplomer (S), integral membrane (M) and nucleocapsid (N) genes of feline infectious peritonitis virus (FIPV) type I strain KU‐2, UCD1 and Black, and feline enteric coronavirus (FECV) type II strain 79–1683. Only M and N genes were analyzed in strain KU‐2 and strain 79–1683, which still had unknown nucleotide sequences. Deduced amino acid sequences of S, M and N proteins were compared in a total of 7 strains of coronaviruses, which included FIPV type II strain 79–1146, canine coronavirus (CCV) strain Insavc‐1 and transmissible gastroenteritis virus of swine (TGEV) strain Purdue. Comparison of deduced amino acid sequences of M and N proteins revealed that both M and N proteins had an identity of at least 90% between FIPV type I and type II. The phylogenetic tree of the M and N protein‐deduced amino acid sequences showed that FIPV type I and type II form a group with FECV type II, and that these viruses were evolutionarily distant from CCV and TGEV. On the other hand, when the S protein‐deduced amino acid sequences was compared, identity of only about 45% was found between FIPV type I and type II. The phylogenetic tree of the S protein‐deduced amino acid sequences indicated that three strains of FIPV type I form a group, and that it is a very long distance from the FIPV type II, FECV type II, CCV and TGEV groups.

Keywords: feline infectious peritonitis virus, feline enteric coronavirus, amino acid sequence


Abbreviations

CCV

canine coronavirus

fcwf 4

Felis catus whole fetus cells

FECV

feline enteric coronavirus

FIPV

feline infectious peritonitis virus

kb

kilobases

kDa

kilodaltons

M protein

integral membrane glycoprotein

M gene

integral membrane gene

N protein

nucleocapsid protein

N gene

nucleocapsid gene

ORF

open reading frame

RT

reverse transcription

S protein

peplomer glycoprotein

S gene

peplomer gene

TGEV

transmissible gastroenteritis virus of swine

REFERENCES

  • 1. Black, J.W. 1982. Recovery and in vitro cultivation of a coronavirus from laboratory‐induced cases of feline infectious peritonitis (FIP). Vet. Med. [small anim clin] 75: 811–814. [PubMed] [Google Scholar]
  • 2. Dayhoff, M.O. , Schwaryz, R.M. , and Orcutt, B.C. 1987. A model of evolutionary change in proteins, p. 345–352. In Dayhoff M.O. (ed), Atlas of protein sequence and structure, Vol. 5, suppl. 3, National Biomedical Research Foundation, Washington, D.C.. [Google Scholar]
  • 3. de Groot, R.J. , Maduro, J. , Lenstra, J.A. , Horzinek, M.C. , van der Zeijst, B.A. , and Spaan, W.J. 1987. cDNA cloning and sequence analysis of the gene encoding the peplomer protein of feline infectious peritonitis virus. J. Gen. Virol. 68: 2639–2646. [DOI] [PubMed] [Google Scholar]
  • 4. de Groot, R.J. , ter Haar, R.J. , Horzinek, M.C. , and van der Zeijst, B.A. 1987. Intracellular RNAs of the feline infectious peritonitis coronavirus strain 79–1146. J. Gen. Virol. 68: 995–1002. [DOI] [PubMed] [Google Scholar]
  • 5. de Groot, R.J. , Andeweg, A.C. , Horzinek, M.C. , and Spaan, W.J. 1988. Sequence analysis of the 3′‐end of the feline coronavirus FIPV 79–1146 genome: comparison with the genome of porcine coronavirus TGEV reveals large insertions. Virology 167: 370–376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Fiscus, S.A. , and Teramoto, Y.A. 1987. Antigenic comparison of feline coronavirus isolates: evidence for markedly different peplomer glycoproteins. J. Virol. 61: 2607–2613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Hohdatsu, T. , Okada, S. , and Koyama, H. 1991. Characterization of monoclonal antibodies against feline infectious peritonitis virus type II and antigenic relationship between feline, porcine, and canine coronaviruses. Arch. Virol. 117: 85–95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Hohdatsu, T. , Sasamoto, T. , Okada, S. , and Koyama, H. 1991. Antigenic analysis of feline coronaviruses with monoclonal antibodies (MAbs): preparation of MAbs which discriminate between FIPV strain 79–1146 and FECV strain 79–1683. Vet. Microbiol. 28: 13–24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Hohdatsu, T. , Okada, S. , Ishizuka, Y. , Yamada, H. , and Koyama, H. 1992. The prevalence of types I and II feline coronavirus infections in cats. J. Vet. Med. Sci. 54: 557–562. [DOI] [PubMed] [Google Scholar]
  • 10. Horsburgh, B.C. , Brierley, I. , and Brown, T.D. 1992. Analysis of a 9.6 kb sequence from the 3′ end of canine coronavirus genomic RNA. J. Gen. Virol. 73: 2849–2862. [DOI] [PubMed] [Google Scholar]
  • 11. Horzinek, M.C. , Lutz, H. , and Pedersen, N.C. 1982. Antigenic relationships among homologous structural polypeptides of porcine, feline, and canine coronaviruses. Infect. Immun. 37: 1148–1155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Jacobs, L. , de Groot, R.J. , van der Zeijst, B.A. , Horzinek, M.C. , and Spaan, W. 1987. The nucleotide sequence of the peplomer gene of porcine transmissible gastroenteritis virus (TGEV): comparison with the sequence of the peplomer protein of feline infectious peritonitis virus (FIPV). Virus Res. 8: 363–371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Kapke, P.A. , and Brian, D.A. 1986. Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsid protein gene. Virology 151: 41–49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Kapke, P.A. , Tung, F.Y. , Brian, D.A. , Woods, R.D. , and Wesley, R. 1987. Nucleotide sequence of the porcine transmissible gastroenteritis coronavirus matrix protein gene. Adv. Exp. Med. Biol. 218: 117–122. [DOI] [PubMed] [Google Scholar]
  • 15. McArdle, F. , Bennett, M. , Gaskell, R.M. , Tennant, B. , Kelly, D.F. , and Gaskell, C.J. 1992. Induction and enhancement of feline infectious peritonitis by canine coronavirus. Am. J. Vet. Res. 53: 1500–1506. [PubMed] [Google Scholar]
  • 16. McKeirnan, A.J. , Evermann, J.F. , Hargis, A. , Miller, L.M. , and Ott, R.L. 1981. Isolation of feline coronavirus from two cats with diverse disease manifestations. Feline Pract. 11: 16–20. [Google Scholar]
  • 17. Motokawa, K. , Hohdatsu, T. , Aizawa, C. , Koyama, H. , and Hashimoto, H. 1995. Molecular cloning and sequence determination of the peplomer protein gene of the feline infectious peritonitis virus type I. Arch. Virol. 140: 469–480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Olsen, C.W. 1993. A review of feline infectious peritonitis virus: molecular biology, immunopathogenesis, clinical aspects, and vaccination. Vet. Microbiol. 36: 1–37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Pedersen, N.C. 1976. Morphologic and physical characteristics of feline infectious peritonitis virus and its growth in autochthonous peritoneal cell cultures. Am. J. Vet. Res. 37: 567–572. [PubMed] [Google Scholar]
  • 20. Pedersen, N.C. , Ward, J. , and Mengeling, W.L. 1978. Antigenic relationship of the feline infectious peritonitis virus to coronaviruses of other species. Arch. Virol. 58: 45–53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Pedersen, N.C. , Boyle, J.F. , and Floyd, K. 1981. Infection studies in kittens, using feline infectious peritonitis virus propagated in cell culture. Am. J. Vet. Res. 42: 363–367. [PubMed] [Google Scholar]
  • 22. Pedersen, N.C. , and Black, J.W. 1983. Attempted immunization of cats against feline infectious peritonitis, using avirulent live virus or sublethal amounts of virulent virus. Am. J. Vet. Res. 44: 229–234. [PubMed] [Google Scholar]
  • 23. Pedersen, N.C. , Black, J.W. , Boyle, J.F. , Evermann, J.F. , McKeirnan, A.J. , and Ott, R.L. 1984. Pathogenic differences between various feline coronavirus isolates. Adv. Exp. Med. Biol. 173: 365–380. [DOI] [PubMed] [Google Scholar]
  • 24. Pedersen, N.C. , Evermann, J.F. , McKeirnan, A.J. , and Ott, R.L. 1984. Pathogenicity studies of feline coronavirus isolates 79–1146 and 79–1683. Am. J. Vet. Res. 45: 2580–2585. [PubMed] [Google Scholar]
  • 25. Pedersen, N.C. 1987. Virologic and immunologic aspects of feline infectious peritonitis virus infection. Adv. Exp. Med. Biol. 218: 529–550. [DOI] [PubMed] [Google Scholar]
  • 26. Rasschaert, D. , and Laude, H. 1987. The predicted primary structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis virus. J. Gen. Virol. 68: 1883–1890. [DOI] [PubMed] [Google Scholar]
  • 27. Reed, A.P. , Klepfer, S. , Miller, T. , and Jones, E. 1993. Cloning and sequence analysis of the spike gene from several feline coronaviruses. Adv. Exp. Med. Biol. 342: 17–21. [DOI] [PubMed] [Google Scholar]
  • 28. Sanchez, C.M. , Jimenez, G. , Laviada, M.D. , Correa, I. , Sune, C. , Bullido, M. , Gebauer, F. , Smerdou, C. , Callebaut, P. , and Escribano, J.M. 1990. Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology 174: 410–417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Sokal, R.R. , and Michener, C.D. 1958. A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull. 28: 1409–1438. [Google Scholar]
  • 30. Takashi, K. , and Gotoh, P. 1984. Sequence relationship among various 4.5 S RNA species. J. Biochem. 92: 1173–1177. [DOI] [PubMed] [Google Scholar]
  • 31. Vennema, H. , de Groot, R.J. , Harbour, D.A. , Horzinek, M.C. , and Spaan, W.J. 1991. Primary structure of the membrane and nucleocapsid protein genes of feline infectious peritonitis virus and immunogenicity of recombinant vaccinia viruses in kittens. Virology 181: 327–335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Vennema, H. , Rossen, J.W. , Wesseling, J. , Horzinek, M.C. , and Rottier, P.J. 1992. Genomic organization and expression of the 3′ end of the canine and feline enteric coronaviruses. Virology 191: 134–140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Wesseling, J.G. , Vennema, H. , Godeke, G.J. , Horzinek, M.C. , and Rottier, P.J. 1994. Nucleotide sequence and expression of the spike (S) gene of canine coronavirus and comparison with the S proteins of feline and porcine coronaviruses. J. Gen. Virol. 75: 1789–1794. [DOI] [PubMed] [Google Scholar]

Articles from Microbiology and Immunology are provided here courtesy of Wiley

RESOURCES