Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2006 Oct 27;11(3):429–436. doi: 10.1111/j.1365-2958.1994.tb00324.x

The receptor for Bacillus thuringiensis CrylA(c) delta‐endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N

Peter J K Knight 1, Neil Crickmore 1, David J Ellar 1,
PMCID: PMC7168503  PMID: 7908713

Summary

A 120 kDa glycoprotein in the larval midgut membrane of the Iepidopteran Manduca sexta, previously identified as a putative receptor for Bacillus thuringiensis CrylA(c) δ‐endotoxin, has been purified by a combination of protoxin affinity Chromatography and anion exchange chromatography. In immunoblotting experiments, the purified glycoprotein has the characteristics predicted of the receptor: it binds CrylA(c) toxin In the presence of GlcNAc but not GalNAc; it binds the lectin SBA; but it does not bind CrylB toxin. N‐terminal and internal amino acid sequences obtained from the protein show a high degree of similarity with the enzyme aminopeptidase N (EC 3.4.11.2). When assayed for aminopeptidase activity, purified receptor preparations were enriched 5.3‐fold compared to M. sexta brush border membrane vesicles. We propose that the receptor for CrylA(c) toxin in the brush border membrane of the lepidopteran M. sexta is the metalloprotease aminopeptidase N.

References

  1. Bauer, L.S. , and Pankratz, H.S. (1992) Ultrastructural effects of Bacillus thuringiensis var. san diego on midgut cells of the cottonwood leaf beetle. J Invertebr Pathol 60: 15–25. [Google Scholar]
  2. Carroll, J. , and Ellar, D.J. (1993) An analysis of Bacillus thuringiensisδ‐endotoxin action on insect‐midgut‐membrane permeability using a light‐scattering assay. Eur J Biochem 214: 771–778. [DOI] [PubMed] [Google Scholar]
  3. Delmas, B. , Gelfi, J. , L'Haridon, R. , Vogel, L.K. , Sjostrom, H. , Noren, O. , and Laude, H. (1992) Aminopeptidase N is a major receptor for the entero‐pathogenic coronavirus TGEV. Nature 357: 417–420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Garczynski, S.F. , Crim, J.W. , and Adang, M.J. (1991) Identification of putative insect brush border membrane‐binding molecules specific to Bacillus thuringiensisδ‐endotoxin by protein blot analysis, Appl Environ Microbiol 57: 2816–2820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Geirasch, L.M. (1989) Signal sequences. Biochemistry 28: 923–930. [DOI] [PubMed] [Google Scholar]
  6. Hafkenscheid, J.C.M. (1984) Aminopeptidases and amino acid arylamidases In Methods of Enzymatic Analysis, Vol V, Enzymes 3; Peptidases, Proteinases and their Inhibitors. Bergemayer J. (ed.) Weinheim : Verlag Chemie, pp 2–34. [Google Scholar]
  7. Hawkes, R. , Niday, E. , and Gordon, J. (1982) A dot‐immunoblotting assay for monoclonal and other antibodies. Anal Biochem 119: 142–147. [DOI] [PubMed] [Google Scholar]
  8. Hofmann, C. , Vander Bruggen, H. , Hofte, H. , Van Rie, J. , Jansens, S. , and Van Mellaert, H. (1988) Specificity of Bacillus thuringiensisδ‐endotoxins is correlated with the presence of high‐affinity binding sites in the brush border membrane of target insect midguts. Proc Natl Acad Sci USA 85: 7844–7848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hofte, H. , and Whiteley, H.R. (1989) Insecticidal crystal proteins of Bacillus thuringiensis . Microbiol Rev 53: 242–255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Knowles, B.H. , Knight, P.J.K. , and Ellar, D.J. (1991) N‐acetyl galactosamine is part of the receptor in insect gut epithelia that recognises an insecticidal protein from Bacillus thuringiensis . Proc R Soc Lond B 245: 31–35. [DOI] [PubMed] [Google Scholar]
  11. Kramer, M.T.C , and Robinson, G.B. (1979) Studies on the structure of the rabbit kidney brush border. Eur J Biochem 99: 345–351. [DOI] [PubMed] [Google Scholar]
  12. Lowry, O.H. , Roberts, N.R. , Wu, M‐L. , Hixon, W.S. , and Crawford, E.J. (1954) The quantitative histochemistry of brain; II enzyme measurements. J Biol Chem 207, 19–37. [PubMed] [Google Scholar]
  13. Percy, J. , and Fast, P.G. (1983) Bacillus thuringiensis crystal toxin: ultrastructural studies of its effect on silkworm midgut cells. J Invertebr Pathol 41: 86–98. [Google Scholar]
  14. Semenza, G. (1986) Anchoring and biosynthesis of stalked brush border membrane proteins; glycosidases and peptidases of enterocytes and renal tubuli. Annu Rev Cell Biol 2: 255–313. [DOI] [PubMed] [Google Scholar]
  15. Semenza, G. (1989) The insertion of stalked proteins of the brush border membranes: the state of the art in 1988. Biochem Int 18: 15–33. [PubMed] [Google Scholar]
  16. Singh, G.J.P. , Schouest, Jr, L.P. , and Gill, S.S. (1986) The toxic action of Bacillus thuringiensis var. israelensis in Aedes aegypti in vivo . Pestic Biochem Physiol 26: 36–46. [Google Scholar]
  17. Smith, P.K. , Krohn, R.I. , Hermanson, G.T. , Mallia, A.K. , Gartner, F.H. , Provenzano, M.D. , Fujimoto, E.K. , Goeke, N.M. , Olsen, B.J. , and Klenk, D.C. (1985) Measurement of protein using bicinchonic acid. Anal Biochem 150: 76–85. [DOI] [PubMed] [Google Scholar]
  18. Stone, K.L. , LoPresti, M.B. , Crawford, J.M. , DeAngelis, R. , and Williams, K.R. (1989) Enzymatic digestion of proteins and HPLC peptide isolation In A Practical Guide to Protein and Peptide Purification for Microsequencing. Matsudaira P.T. (ed.) London : Academic Press, pp. 31–47. [Google Scholar]
  19. Takesue, S. , Yokota, K. , Miyajima, S. , Taguchi, R. , Ikezawa, H. , and Takesue, Y. (1992) Partial release of aminopeptidase N from larval midgut cell membranes of the silkworm, Bombyx mori, by phosphatidylinositol‐specific phospholipase C. Comp Biochem Physiol 102B: 7–11. [DOI] [PubMed] [Google Scholar]
  20. Tan, P.S.T. , van Alen‐Boerrigter, I.J. , Poolman, B. , Siezen, R.J. , de Vos, W.M. , and Konings, W.N. (1992) Characterisation of the Lactococcus lactis pepN gene encoding an aminopeptidase homologous to mammalian aminopeptidase N. FEBS Lett 306: 9–16. [DOI] [PubMed] [Google Scholar]
  21. Thomas, W.E. , and Ellar, D.J. (1983) Bacillus thuringiensis var. israelensis crystal δ‐endotoxin; effects on insect and mammalian cells in vivo and in vitro . J Cell Sci 60: 181–197. [DOI] [PubMed] [Google Scholar]
  22. Van Rie, J. , Jansens, S. , Hofte, H. , Degheele, D. , and Van Mellaert, H. (1989) Specificity of Bacillus thuringiensisδ‐endotoxins. Eur J Biochem 186: 239–247. [DOI] [PubMed] [Google Scholar]
  23. Van Rie, J. , Jansens, S. , Hofte, H. , Degheele, D. , and Van Mellaert, H. (1990) Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta‐endotoxins. Appl Environ Microbiol 56: 1378–1385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Walker, J.E. , Arizmendi, J.M. , Dupuis, A. , Feamley, I.M. , Finel, M. , Medd, S.M. , Pilkington, S.J. , Runswick, M.J. , and Skehel, J.M. (1992) Sequences of 20 subunits of NADH: ubiquinone oxidoreductase from bovine heart mitochondria. J Mol Biol 226: 1051–1072. [DOI] [PubMed] [Google Scholar]
  25. Watt, V.M. , and Yip, C.C. (1989) Amino acid sequence deduced from a rat kidney cDNA suggests it encodes the Zn‐peptidase aminopeptidase N. J Biol Chem 264: 5480–5487. [PubMed] [Google Scholar]
  26. Wolfersberger, M.G. (1984) Enzymology of plasma membranes of insect intestinal cells. Amer Zool 24: 187–197. [Google Scholar]
  27. Wolfersberger, M. , Luethy, P. , Maurer, A. , Parenti, P. , Sacchi, F.V. , Giordana, B. , and Hanozet, G.M. (1987) Preparation and partial characterisation of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae) . Comp Biochem Physiol 86A: 301–308. [Google Scholar]
  28. Wolfersberger, M.G. (1990) The toxicity of two Bacillus thuringiensisδ‐endotoxins to gypsy moth larvae is inversely related to the affinity of binding sites on the midgut brush border membranes for the toxins. Experientia 46: 475–477. [DOI] [PubMed] [Google Scholar]
  29. Yeager, C.L. , Ashmun, R.A. , Williams, R.K. , Cardellichio, CB. , Shapiro, L.H. , Look, A.T. , and Holmes, K.V. (1992) Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357: 420–422. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular Microbiology are provided here courtesy of Wiley

RESOURCES