Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2006 Dec 7;28(1):1–38. doi: 10.1002/med.20096

Anti‐influenza virus agents: Synthesis and mode of action

Irene M Lagoja 1,, Erik De Clercq 2,
PMCID: PMC7168508  PMID: 17160999

Abstract

Annual epidemics of influenza virus infection are responsible for considerable morbidity and mortality, and pandemics are much more devastating. Considerable knowledge of viral infectivity and replication has been acquired, but many details still have to be elucidated and the virus remains a challenging target for drug design and development. This review provides an overview of the antiviral drugs targeting the influenza viral replicative cycle. Included are a brief description of their chemical syntheses and biological activities. For other reviews, see References.1, 2, 3, 4, 5, 6, 7, 8, 9 © 2006 Wiley Periodicals, Inc. Med Res Rev, 28, No. 1, 1–38, 2008

Keywords: influenza, synthesis, antiviral drugs, replicative cycle

REFERENCES

  • 1. Roberts NA. Anti‐influenza drugs and neuraminidase inhibitors. Progress Drug Res 2001; 56: 195–237. [DOI] [PubMed] [Google Scholar]
  • 2. Shigeta S. Targets of anti‐influenza chemotherapy other than neuraminidase and proton pump. Antiviral Chem Chemother 2001; 12: 179–188. [PubMed] [Google Scholar]
  • 3. Schmidt AC. Antiviral therapy for influenza. A clinical and economic comparative review. Drugs 2004; 64(18): 2031–2046. [DOI] [PubMed] [Google Scholar]
  • 4. Monto AS. The role of antivirals in the control of influenza. Vaccine 2003; 21: 1796–1800. [DOI] [PubMed] [Google Scholar]
  • 5. De Clercq E. Highlights in the development of new antiviral agents. Mini Rev Med Chem 2002; 2: 163–175. [DOI] [PubMed] [Google Scholar]
  • 6. Meanwell NA, Krystal M. Taking aim at a moving target—Inhibitors of influenza virus part 1: Virus adsorption, entry and uncoating. Drug Discovery Today 1996; 1(8): 316–324. [Google Scholar]
  • 7. Ison MG, Hayden FG. Therapeutic options for the management of influenza. Curr Opinion Pharmacol 2001; 1: 482–490. [DOI] [PubMed] [Google Scholar]
  • 8. Kandel R, Hartshorn KL. Prophylaxis and treatment of influenza virus infection. BioDrugs 2001; 15(3): 303–323. [DOI] [PubMed] [Google Scholar]
  • 9. Colacino JM, Staschke KA, Laver WG. Approaches and strategies for the treatment of influenza virus infections. Antiviral Chem Chemother 1999; 10: 155–185. [DOI] [PubMed] [Google Scholar]
  • 10. Palese P. Influenza: Old and new threats. Nature Med 2004; 10(12 Suppl): S82–S87. [DOI] [PubMed] [Google Scholar]
  • 11. Sauter NK, Glick GD, Crowther RL, Park SJ, Eisen MB, Skehel JJ, Knowles JR, Wiley DC. Crystallographic detection of a second ligand binding site in influenza virus hemagglutinin Proc Natl Acad Sci USA, 1992; 89(1): 324–328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Glick GD, Toogood PL, Wiley DC, Skehel JJ, Knowles JR. Ligand recognition by influenza virus. The binding of bivalent sialosides. J Biol Chem 1991; 266(35): 23660–23669. [PubMed] [Google Scholar]
  • 13. Hartshorn KL, White MR, Voelker DR, Coburn J, Zaner K, Crouch EC. Mechanism of binding of surfactant protein D to influenza A viruses: Importance of binding to hemagglutinin to antiviral activity. Biochem J 2000; 351(2): 449–458. [PMC free article] [PubMed] [Google Scholar]
  • 14. Lees WJ, Spaltenstein A, Kingery‐Wood JE, Whitesides GM. Polyacrylamides bearing pendant α‐sialoside groups strongly inhibit agglutination of erythrocytes by influenza A virus: Multivalency and steric stabilization of particulate biological systems. J Med Chem 1994; 37(20): 3419–3433. [DOI] [PubMed] [Google Scholar]
  • 15. Mammen M, Dahmann G, Whitesides GM. Effective Inhibitors of hemagglutination by influenza virus synthesized from polymers having active ester groups. Insight into mechanism of inhibition. J Med Chem 1995; 38(21): 4179–4790. [DOI] [PubMed] [Google Scholar]
  • 16. Choi S‐K, Mammen M, Whitesides GM. Monomeric inhibitors of influenza neuraminidase enhance the hemagglutination inhibition activities of polyacrylamides presenting multiple C‐sialoside groups. Chem Biol 1996; 3(2): 97–104. [DOI] [PubMed] [Google Scholar]
  • 17. Pritchett TJ, Paulson JC. Basis for the potent inhibition of influenza virus infection by equine and guinea pig α 2‐macroglobulin. J Biol Chem 1989; 264(17): 9850–9858. [PubMed] [Google Scholar]
  • 18. Sabesan S, Duus JO, Neira S, Domaille P, Kelm S, Paulson JC, Bock K. Cluster sialoside inhibitors for influenza virus: Synthesis, NMR, and biological studies. J Am Chem Soc 1992; 114(22): 8363–8375. [Google Scholar]
  • 19. Roy R, Zanini D, Meunier SJ, Romanowska A. Solid‐phase synthesis of dendritic sialoside inhibitors of influenza A virus hemagglutinin. J Chem Soc Chem Commun 1993; 24: 1869–1872. [Google Scholar]
  • 20. Spevak W, Nagy JO, Charych DH, Schaefer ME, Gilbert JH, Bednarski MD. Polymerized liposomes containing C‐glycosides of sialic acid: Potent inhibitors of influenza virus in vitro infectivity. J Am Chem Soc 1993; 115(3): 1146–1147. [Google Scholar]
  • 21. Ogura H, Furuhata K, Ito M, Shitori Y. Studies on nucleoside analogs. Part XXVII. Studies on sialic acids. III. Synthesis of 2‐O‐glycosyl derivatives of N‐acetyl‐d‐neuraminic acid. Carbohydr Res 1986; 158: 37–51. [Google Scholar]
  • 22. Klenk HD, Rott R. The molecular biology of influenza virus pathogenicity. Adv Virus Res 1988; 34: 247–281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Goto H, Kawasaki Y. A novel mechanism for acquisition of virolence by a human influenza A virus. Proc Natl Acad Sci USA, 1998; 95: 10224–10228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Steinhauer D. Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology 1999; 258: 1–20. [DOI] [PubMed] [Google Scholar]
  • 25. Tashiro M, Klenk H, Rott R. Inhibitory effect of a protease inhibitor, leupeptin, on the development of influenza pneunomia, mediaded by concomitant bacteria. J Gen Virol 1987; 68: 2039–2041. [DOI] [PubMed] [Google Scholar]
  • 26. Kido H, Beppu Y, Imamura Y, Ye C, Murakami M, Oba K, Towatari T. The human mucus protease inhibitor and its mutants are novel defensive compounds against infection with influenza A and Sendai viruses. Biopolymers 1999; 51(1): 79–86. [DOI] [PubMed] [Google Scholar]
  • 27. Lozitsky VP, Puzis IE, Polyar RY. Resistance of mice to reinfection after ϵ‐aminocaproic acid treatment of primary influenza virus infection. Acta Virol 1988; 32: 117–122. [PubMed] [Google Scholar]
  • 28. Puzis LE, Lozitsky VP. Action of epsilon‐aminocaproic acid on the proteolysis system during experimental influenza in mice. Acta Virol 1988; 32: 515–521. [PubMed] [Google Scholar]
  • 29. Luo G, Torri A, Harte WE, Danetz S, Cianci C, Tiley L, Day S, Mullaney D, Yu KL, Ouellet C, Dextraze P, Meanwell N, Colonno R, Krystal M. Molecular mechanism underlying the action of a novel fusion inhibitor of influenza A virus. J Virol 1997; 71: 4062–4070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Combrink KD, Gulgeze B, Yu K‐L, Pearce BC, Trehan AK, Wei J, Deshpande M, Krystal M, Torri A, Luo G, Cianci C, Danetz S, Tiley L, Meanwell NA. Salicylamide inhibitors of influenza virus fusion. Bioorg Med Chem Lett 2000; 10: 1649–1652. [DOI] [PubMed] [Google Scholar]
  • 31. Deshpande MS, Wei J, Luo G, Cianci C, Danetz S, Torri Al, Tiley L, Krystal M, Yu K‐L, Huang S, Gao Q, Meanwell NA. An approach to the identification of potent inhibitors of influenza virus fusion using parallel synthesis methology. Bioorg Med Chem Lett 2001; 11: 2393–2396. [DOI] [PubMed] [Google Scholar]
  • 32. Yu K‐L, Torri AF, Luo G, Cianci C, Grant‐Young K, Danetz S, Tiley L, Krystal M, Meanwell NA. Structure‐activity relationships for a series of thiobenzamide influenza fusion inhibitors derived from 1,3,3‐trimethyl‐5‐hydroxy‐cyclohexylmethylamine. Bioorg Med Chem Lett 2002; 12: 3379–3382. [DOI] [PubMed] [Google Scholar]
  • 33. Plotch SJ, O'Hara B, Morin J, Palant O, LaRocque J, Bloom JD, Lang SA. Jr. , DiGrandi MJ, Bradley M, Nilakantan R, Gluzman Y. Inhibition of influenza A virus replication by compounds interfering with the fusogenic function of the viral hemagglutinin. J Virol 1999; 73: 140–151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Hoffmann LR, Kuntz ID, White JM. Structure based identification of an inducer of the low‐pH conformational change in the influenza virus hemagglutinin: Irreversible inhibition of infectivity. J Virol 1997; 71: 8808–8829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Ott S, Wunderli‐Allenspach H. Effect of the virostatic norakin (triperiden) on influenza virus activities. Antiviral Res 1994; 24(1): 37–42. [DOI] [PubMed] [Google Scholar]
  • 36. Shibata M, Aoki H, Tsurumi T, Sugiura Y, Nishiyama Y, Suzuki S, Maeno K. Mechanism of uncoating of influenza B virus in MDCK cells: Action of chloroquine. J Gen Virol 1983; 64(5): 1149–1156. [DOI] [PubMed] [Google Scholar]
  • 37. Staschke KA, Hatch SD, Tang JC, Hornback WJ, Munroe JE, Colacino JM, Muesing MA. Inhibition of influenza virus hemagglutinin‐mediated membrane fusion by a compound related to podocarpic acid. Virology 1998; 248(2): 264–274. [DOI] [PubMed] [Google Scholar]
  • 38. O'Keefe BR, Smee DF, Turpin JA, Saucedo CJ, Gustafson KR, Mori T, Blakeslee D, Buckheit R, Boyd MR. Potent anti‐influenza activity of cyanovirin‐N and interactions with viral hemagglutinin. Antimicrob Agents Chemother 2003; 47(8): 2518–2525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Tu Q, Pinto LH, Luo G, Shaughnessy MA, Mullaney D, Kurtz S, Krystal M, Lamb RA. Characterization of inhibition of M2 ion channel activity by BL‐1743, an inhibitor of influenza A virus. J Virol 1996; 70(7): 4246–4252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Davies WL, Grunert RR, Haff RF, McGahen JW, Neumayer EM, Paulshock M, Watts JC, Wood TR, Hermann EC, Hoffmann CE. Antiviral activity of 1‐adamantanamine (amantadine). Science 1964; 144: 862–863. [DOI] [PubMed] [Google Scholar]
  • 41. Hoffmann CE. Amantadine HCl and related compounds In: Carter WA, Editor. “Selective inhibitors of viral functions”. Cleveland: CRC Press; 1973. p 199. [Google Scholar]
  • 42. Grunnert RR, McGahen JW, Davies WL. The in vivo antiviral activity of 1‐adamantanamine (amantadine). 1. Prophylactic and therapeutic activity against influenza viruses. Virology 1965; 26: 262–269. [DOI] [PubMed] [Google Scholar]
  • 43. Dolin R, Reichman RC, Madore HP, Maynard R, Lindon PM, Webber‐Jones J. A controlled trial of amantadine and rimandadine in the prophylaxis of influenza A infections. N Engl J Med 1982; 307: 580–584. [DOI] [PubMed] [Google Scholar]
  • 44. Couch RB, Jackson GG. Antiviral agents in influenza—Summary of influenza workshop VIII. J Infect Dis 1976; 134: 516–527. [DOI] [PubMed] [Google Scholar]
  • 45. Bryson YJ, Monahan C. Pollack M. Shields WD. A prospective double‐blind study of side effects associated with the administration of amantadine for influenza A virus prophylaxis. J Infect Dis 1980; 141: 543–547. [DOI] [PubMed] [Google Scholar]
  • 46. Falbe J. In: “New synthesis with carbon monoxide” Eds. Berlin: Springer; 1980; p 372. [Google Scholar]
  • 47. Mori H, Mori A, Xu Q, Souma Y. Koch carbonylation using silver trifluormethanesulfonate. Tetrahedron Lett 2002; 43: 7871–7874. [Google Scholar]
  • 48. VÚcha R, Potáček M. Influence of catalytic system composition on formation of adamantine containing ketones. Tetrahedron 2005; 61: 83–88. [Google Scholar]
  • 49. Kolocouris N, Foscolos GB, Kolocouris A, Marakos P, Pouli N, Fytas G, Ikeda S, De Clercq E. Synthesis and antiviral activity evaluation of some aminoadamantane derivatives. J Med Chem 1994; 37: 2896–2902. [DOI] [PubMed] [Google Scholar]
  • 50. Stamatiou G, Foscolos GB, Fytas G, Kolocouris A, Kolocouris N, Pannecouque C, Witvrouw M, Padalko E, Neyts J, De Clercq E. Heterocyclic rimantadine analogues with antiviral activity. Bioorg Med Chem 2003; 11: 5485–5492. [DOI] [PubMed] [Google Scholar]
  • 51. Stamatiou G, Kolocouris A, Kolocouris N, Fytas G, Foscolos GB, Neyts J, De Clercq E. Novel 3‐(2‐Adamantyl)pyrrolidines with potent activity against influenza A virus‐identification of aminoadamantane derivatives bearing two pharmacophoric amine groups. Bioorg Med Chem Lett 2001; 11: 2137–2142. [DOI] [PubMed] [Google Scholar]
  • 52. Kolocouris A, Tataridis D, Fytas G, Mavromoustakos T, Foscolos GB, Kolocouris N, De Clercq E. Synthesis of 2‐(2‐adamantyl)piperidines and structure antiinfluenzavirus A activity relationship study using a combination of NMR spectroscopy and molecular modeling. Bioorg Med Chem Lett 1999; 9: 3465–3470. [DOI] [PubMed] [Google Scholar]
  • 53. Kolocouris N, Kolocouris A, Foscolos GB, Fytas G, Neyts J, Padalko E, Balzarini J, Snoeck R, Andrei G, De Clercq E. Synthesis and antiviral activity evaluation of some new aminoadamantane derivatives 2. J Med Chem 1996; 39: 3307–3318. [DOI] [PubMed] [Google Scholar]
  • 54. Zoidis G, Fytas C, Papanastasiou I, Foscolos GB, Fytas G, Padalko E, De Clercq E, Naesens L, Neyts J, Kolocouris N. Heterocyclic rimantadine analogues with antiviral activity. Bioorg Med Chem 2006; 14: 3341–3348. [DOI] [PubMed] [Google Scholar]
  • 55. Stylianakis I, Kolocouris A, Kolocouris N, Fytas G, Foscolos GB, Padalko E, Neyts J, De Clercq E. Spiro[pyrrolidine‐2,2′‐adamantanes]: Synthesis, anti‐influenza virus activity and conformational properties. Bioorg Med Chem Lett 2003; 13: 1699–1703. [DOI] [PubMed] [Google Scholar]
  • 56. Tanner JA, Zheng B‐J, Zhou J, Watt RM, Jiang J‐Q, Wong K‐L, Lin Y‐P, Lu L‐Y, He M‐L, Kung H‐F, Kesel AJ, Huang J‐D. The adamantane‐derived bananins are potent inhibitors of the helicase activities and replication of SARS coronavirus. Chem Biol 2005; 12: 303–311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Kesel AJ. A system of protein target sequences foranti‐RNA‐viral chemotherapy by a vitamin B6‐derived zinc chelating trioxa‐adamantane‐triol. Bioorg Med Chem 2003; 11: 4599–4613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Uehara Y. Natural product origins of Hsp90 inhibitors. Curr Cancer Drug Targets 2003; 3: 325–330. [DOI] [PubMed] [Google Scholar]
  • 59. Garcia Martinez A, Teso Vilar E, Garcia Fraile A, de la Cerero S, Rodriguez Herrero ME, Martinez Ruiz P, Subramanian LR, Garcia Gancedo A. Synthesis of substituted 1‐norbornylamines with antiviral activity. J Med Chem 1995; 38(22): 4474–4477. [DOI] [PubMed] [Google Scholar]
  • 60. Al‐Nakib W, Higgins PG, Willman J, Tyrrell DAJ, Swallow DL, Hurst BC, Rushton A. Prevention and treatment of experimental influenza A virus infection in volunteers with a new antiviral ICI 130685. J Antimicrob Chemother 1986; 18(1): 119–129. [DOI] [PubMed] [Google Scholar]
  • 61. Kurtz S, Luo G, Hahnenberger KM, Brooks C, Gecha O, Ingalls K, Numata K‐i, Krystal M. Growth impairment resulting from expression of influenza virus M2 protein in Saccharomyces cerevisiae: Identification of a novel inhibitor of influenza virus. Antimicrob Agents Chemother 1995; 39(10): 2204–2209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Giffin K, Rader RK, Marino MH, Forgey RW. Novel assay for the influenza virus M2 channel activity. FEBS Lett 1995; 357: 269–274. [DOI] [PubMed] [Google Scholar]
  • 63. Ochiai H, Sakai S, Hirabayashi T, Shimizu Y, Terasawa K. Inhibitory effect of bafilomycin A1, a specific inhibitor of vacuolar‐type proton pump, on the growth of influenza A and B viruses in MDCK cells. Antiviral Res 1995; 27: 425–430. [DOI] [PubMed] [Google Scholar]
  • 64. Tu Q, Pinto LH, Luo GX, Shaughnessy MA, Mullaney D, Kurtz S, Krystal M, Lamb RA. Characterization of inhibition of M2 ion channel activity by BL‐1743, an inhibitor of influenza A virus. J Virol 1996; 70: 4246–4252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. Rott R, Klenk HD, Nagai Y, Tashiro M. Influenza viruses, cell enzymes, and pathogenicity. Am J Resp Crit Care Med 1995; 152(4 Pt 2): S16–S19. [DOI] [PubMed] [Google Scholar]
  • 66. Lazarowitz SG, Choppin PW. Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology 1975; 68(2): 440–454. [DOI] [PubMed] [Google Scholar]
  • 67. Kawaoka Y, Webster RG. Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cells. Proc Natl Acad Sci USA 1988; 85(2): 324–328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68. Boycott R, Klenk H‐D, Ohuchi M. Cell tropism of influenza virus mediated by hemagglutinin activation at the stage of virus entry. Virology 1994; 203(2): 313–319. [DOI] [PubMed] [Google Scholar]
  • 69. Someya A, Tanaka N, Okuyama A. Inhibition of influenza virus A/WSN replication by a trypsin inhibitor, 6‐amidino‐2‐naphthyl p‐guanidinobenzoate. Biochem Biophys Res Commun 1990; 169(1): 148–152. [DOI] [PubMed] [Google Scholar]
  • 70. Someya A, Tanaka N, Okuyama A. Inhibition of influenza virus A/WSN replication by serine protease inhibitors and anti‐protease antibodies. Antivir Chem Chemotherapy 1994; 5(3): 187–190. [Google Scholar]
  • 71. Bodian DL, Yamasaki RB, Buswell RL, Stearns JF, White JM, Kuntz ID. Inhibition of the fusion‐inducing conformational change of influenza hemagglutinin by benzoquinones and hydroquinones. Biochemistry 1993; 32(12): 2967–2978. [DOI] [PubMed] [Google Scholar]
  • 72. Nagai T, Moriguchi R, Suzuki Y, Tomimori T, Yamada H. Mode of action of the anti‐influenza virus activity of plant flavonoid, 5,7,4′‐trihydroxy‐8‐methoxyflavone, from the roots of Scutellaria baicalensis. Antiviral Res 1995; 26(1): 11–25. [DOI] [PubMed] [Google Scholar]
  • 73. Nagai T, Miyaichi Y, Tomimori T, Suzuki Y, Yamada H. Inhibition of influenza virus sialidase and anti‐influenza virus activity by plant flavonoids. Chem Pharm Bull 1990; 38(5): 1329–1332. [DOI] [PubMed] [Google Scholar]
  • 74. Lamb RA, Krug RM. In: Fields BN, Knipe DM, Howley PM, editors. Fields virology. Philadelphia: Lippincott‐Williams & Wilkins; 1996; pp 1353–1445. [Google Scholar]
  • 75. Doan L, Handa B, Roberts NA, Klumpp K. Metal Ion Catalysis of RNA cleavage by the influenza virus endonuclease. Biochemistry 1999; 38: 5612–5619. [DOI] [PubMed] [Google Scholar]
  • 76. Tomassini JE, Davies MF, Hastings JC, Lingham R, Mojena M, Raghoobar SL, Singh SB, Tkacz JS, Goetz MA. A novel antiviral agent which inhibits the endonuclease of influenza viruses. Antimicrob Agents Chemother 1996; 40: 1189–1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77. Singh SB, Tomassini JE. Synthesis of natural flutimide and analogous fully substituted pyrazine‐2,6‐diones, endonuclease inhibitors of influenza virus. J Org Chem 2001; 66: 5504–5516. [DOI] [PubMed] [Google Scholar]
  • 78. Cianci C, Chung TDY, Meanwell N, Putz H, Hagen M, Colonno RJ, Krystal M. Identification of N‐hydroxamic acid and N‐hydroxyimide compounds that inhibit the influenza virus polymerase. Antiviral Chem Chemother 1996; 7: 353–360. [Google Scholar]
  • 79. Tomassini JE, Davies ME, Hastings JC, Lingham R, Mojena M, Raghoobar SL, Singh SB, Tkacz JS, Goetz MA. A novel antiviral agent which inhibits the endonuclease of influenza viruses. Antimicrob Agents Chemother 1996; 40(5): 1189–1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. Hastings JC, Selnick H, Wolanski B, Tomassini JE. Anti‐influenza virus activities of 4‐substituted 2,4‐dioxobutanoic acid inhibitors. Antimicrob Agents Chemother 1996; 40: 1304–1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81. Tisdale M, Ellis M, Klumpp K, Court S, Ford M. Inhibition of influenza virus transcription by 2′‐deoxy‐2′‐fluoroguanosine. Antimicrob Agents Chemother 1995; 39: 2454–2458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82. Tuttle JV, Tisdale M, Krenitsky TA. Purine 2′‐deoxy‐2′‐fluororibosides as antiinfluenza virus agents. J Med Chem 1993; 36: 119–125. [DOI] [PubMed] [Google Scholar]
  • 83. Tisdale M, Appleyard G, Tuttle JV, Nelson DJ, Nusinoff‐Lehrman S, Al Nakib W, Stables JN, Purifoy DJM, Powell KL, Darby G. Inhibition of influenza A and B viruses by 2′‐deoxy‐2′‐fluororibosides. Antiviral Chem Chemother 1993; 4: 281–287. [Google Scholar]
  • 84. Che CT. Plants as a source of potential antiviral agents In: Plants and traditinal medicine. NY, USA: Academic Press Ltd.; 1991; 167–251. [Google Scholar]
  • 85. Van den Berghe DA, Vlietink AJ, Van Hoof L. Plant products as potential antiviral agents. Bulletin de l'Institut Pasteur 1986; 84: 101–147. [Google Scholar]
  • 86. Serkedjieva J, Velcheva M. In vitro anti‐influenza virus activity of the pavine alkaloid (−)‐thalimonine isolated from Thalictrum simplex L Antiviral Chem Chemother 2003; 14: 75–80. [DOI] [PubMed] [Google Scholar]
  • 87. Furuta Y, Egawa H, Takahashi K, Tsutsui Y, Uehara S, Muratami M. Novel virus proliferation inhibition/virucidal method and novel pyradine nucleotide/pyradine nucleoside analogue. Patent Application. International application number: PCT/JP2002/008250, International publication number: WO 2003/015798.
  • 88. Furuta Y, Takahashi K, Fukuda Y, Kuno M, Kamiyama T, Kozaki K, Nomura N, Egawa H, Minami S, Watanabe Y, Marita H, Shiraki K. In vitro and in vivo activities of anti‐influenza virus compound T‐705. Antimicrob Agents Chemother 2002; 46: 977–981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89. Furuta Y, Egawa H. Nitrogenous heterocyclic carboxamide derivatives or salts thereof and antiviral agents containing both. Patent Application. International application number: PCT/JP99/04429, International publication number: WO 00/10569.
  • 90. Egawa H, Furuta Y, Sugita J, Uehara S, Hamamoto S, Yonezawa K. Novel pyrazine derivatives or salts thereof, pharmaceutical compositions containing the derivatives or the salts and intermediates for the preparation of both. Patent Application. International application number: PCT/JP2001/001038, International publication number: WO 2001/060834.
  • 91. Egawa H, Furuta Y, Sugita J, Uehara S, Hamamoto S, Yonezawa K. Novel pyrazine derivatives or salts thereof, pharmaceutical composition containing the same, and production intermediates thereof. Patent Application. Application number: 02028152.3; EP 1 295 890 B1.
  • 92. Wolfe JP, Wagaw S, Marcoux JF, Buchwald SL. Rational development of practical catalysts for aromatic carbon‐nitrogen bond formation. Acc Chem Res 1998; 31: 805–818. [Google Scholar]
  • 93. Hartwig JF. Transition metal catalyzed synthesis of arylamines and aryl ethers from aryl halides and triflates: Scope and mechanism. Angew Chem In Ed 1998; 37: 2046–2067. [DOI] [PubMed] [Google Scholar]
  • 94. Furuta Y, Takahashi K, Kuno‐Maekawa M, Sangawa H, Uehara S, Kozaki K, Nomura N, Egawa H, Shiraki K. Mechanism of action of T‐705 against influenza virus. Antimicrob Agents Chemother 2005; 49: 981–986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95. Wang W‐L, Yao D‐Y, Gu M, Fan M‐Z, Li J‐Y, Xing Y‐C, Nan F‐J. Synthesis and biological evaluation of novel bisheterocycle‐containing compounds as potential anti‐influenza virus agents. Bioorg Med Chem Lett 2005; 15: 5284–5287. [DOI] [PubMed] [Google Scholar]
  • 96. Sun C, Huang H, Feng M, Shi X, Zhang X, Zhou P. A novel class of potent influenza virus inhibitors: Polysubstituted acylthiourea and its fused heterocycle derivatives. Bioorg Med Chem Lett 2006; 16: 162166. [DOI] [PubMed] [Google Scholar]
  • 97. Abe T, Mizuta T, Suzuki S‐I, Hatta T, Takai K, Yokota T, Takaku H.. In vitro and in vivo anti‐influenza A virus activity of antisense oligonucleotides. Nucleosides & Nucleotides 1999; 18(6 & 7): 1685–1688. [DOI] [PubMed] [Google Scholar]
  • 98. Mizuta T, Fujiwara M, Hatta T, Abe T, Miyano‐Kurosaki N, Shigeta S, Yokota T, Takaku H. Antisense oligonucleotides directed against the viral RNA polymerase gene enhance survival of mice infected with influenza A. Nature Biotechnol 1999; 17(6): 583–587. [DOI] [PubMed] [Google Scholar]
  • 99. Takahasha H, Hamazaki H, Habu Y, Hayashi M, Abe T, Miyano‐Kurosaki N, Takaku H. A new modified DNA enzyme that targets influenza virus A mRNA inhibits viral infection in cultured cells. FEBS Lett 2004; 560: 69–74. [DOI] [PubMed] [Google Scholar]
  • 100. Colacino JM, DeLong DC, Nelson JR, Spitzer WA, Tang J, Victor F, Wu CYE. Evaluation of the anti‐influenza virus activities of 1,3,4‐thiadiazol‐2‐ylcyanamide (LY217896) and its sodium salt. Antimicrob Agents Chemother 1990; 34(11): 2156–2163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101. Hayden FG, Tunkel AR, Treanor JJ, Betts RF, Allerheiligen S, Harris J. Oral LY217896 for prevention of experimental influenza A virus infection and illness in humans. Antimicrob Agents Chemother 1994; 38: 1178–1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102. Stein DS, Creticos CM, Jackson GG, Bernstein JM, Hayden FG, Schiff GM, Bernstein DI. Oral ribavirin treatment of influenza A and B. Antimicrob Agents Chemother 1987; 31: 1285–1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103. Knight V, Gilbert B. Antiviral therapy with small particle aerosols. Eur J Clin Microbiol Infect Dis 1988; 7: 721–731. [DOI] [PubMed] [Google Scholar]
  • 104. Hayden FG, Sable CA, Connor JD, Lane J. Intravenous ribavirin by constant infusion for serious influenza and parainfluenzavirus infection. Antivir Ther 1996; 1: 51–56. [PubMed] [Google Scholar]
  • 105. Gilbert BE, Knight V. Biochemistry and clinical applications of ribavirin Antimicrob Agents Chemother 1986; 30: 201–205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106. Moscona A. Neuraminidase inhibitors for influenza. N Engl J Med 2005; 353(13): 1363–1373. [DOI] [PubMed] [Google Scholar]
  • 107. Anonymous . Molecule of the month: Oseltamivir phosphate (Tamiflu). Drug News Perspect 2005; 18(10): 655–656. [PubMed] [Google Scholar]
  • 108. Jin H, Kim CU. Design of neuraminidase inhibitors as anti‐influenza virus agents. Adv Antiviral Drug Design 2004; 4: 99–117. [DOI] [PubMed] [Google Scholar]
  • 109. Kim CU, Chen X, Mendel DB. Neuraminidase inhibitors as anti‐influenza virus agents. Antiviral Chem Chemother 1999; 10: 141–154. [DOI] [PubMed] [Google Scholar]
  • 110. Abrecht S, Harrington P, Iding H, Karpf M, Trussardi R, Wirz B, Zutter U. The synthetic development of the anti‐influenza neuraminidase inhibitor oseltamivir phosphate (Tamiflu®): A challenge for synthesis & process research. Chimia 2004; 58: 621–629. [Google Scholar]
  • 111. Chand P. Recent advances in the discovery and synthesis of neuraminidase inhibitors. Expert Opin Ther Patents 2005; 15(8): 1009–1025. [Google Scholar]
  • 112. Kim CU, Lew W, Williams MA, Zhang L, Liu H, Swaminathan S, Bischofberger N, Chen MS, Tai CY, Mendel DB, Laver WG, Stevens RC. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: Design, synthesis, and structural analysis of carbocyclic sialic acid analogs with potent anti‐influenza activity. J Am Chem Soc 1997; 119(4): 681–690. [DOI] [PubMed] [Google Scholar]
  • 113. Kim CU, Lew W, Williams MA, Wu H, Zhang L, Chen X, Escarpe PA, Mendel DB, Laver WG, Stevens RC. Structure‐activity relationship studies of novel carbocyclic influenza neuraminidase inhibitors. J Med Chem 1998; 41(14): 2451–2460. [DOI] [PubMed] [Google Scholar]
  • 114. Federspiel M, Fischer R, Hennig M, Mair H‐J, Oberhauser T, Rimmler G, Albiez T, Bruhin J, Estermann H, Gandert C, Goeckel V, Goetzoe S, Hoffmann U, Huber G, Janatsch G, Lauper S, Roeckel‐Staebler O, Trussardi R, Zwahlen AG. Industrial synthesis of the key precursor in the synthesis of the anti‐influenza drug oseltamivir phosphate (Ro 64‐0796/002, GS‐4104‐02): ethyl (3R,4S,5S)‐4,5‐epoxy‐3‐(1‐ethyl‐propoxy)‐1‐cyclohexene‐1‐carboxylate. Org Proc Res Dev 1999; 3(4): 266–274. [Google Scholar]
  • 115. Karpf M, Trussardi R. New, Azide‐free transformation of epoxides into 1,2‐diamino compounds: Synthesis of the anti‐influenza neuraminidase inhibitor oseltamivir phosphate (Tamiflu). J Org Chem 2001; 66(6): 2044–2051. [DOI] [PubMed] [Google Scholar]
  • 116. Harrington PJ, Brown JD, Foderaro T, Hughes RC. Research and development of a second‐generation process for Oseltamivir phosphate, prodrug for a neuraminidase inhibitor Org Proc Res Dev 2004; 8(1): 86–91. [Google Scholar]
  • 117. Enserink M. Oseltamivir becomes plentiful‐but still not cheap. Science 2006; 312: 381–382. [DOI] [PubMed] [Google Scholar]
  • 118. Iding H, Wirz B, Zutter U. Stereo‐specific synthesis of shimikic acid derivatives with improved efficiency Patent Application: Appl. No: 09/811,862. Pub. No: US2001/0036653
  • 119. Ninomiya K, Shiori T, Yamada S. Phosphorus in organic synthesis. VII. Diphenyl phosphorazidate (DPPA). A new convenient reagent for a modified Curtius reaction. Tetrahedron 1974; 30(14): 2151–2157. [Google Scholar]
  • 120. Yeung Y‐Y, Hong S, Corey EJ. A Short Enantioselctive pathway for the synthesis of the anti‐influenza neuramidase inhibitor Oseltamivir from 1,3‐butadiene and acrylic acid. J Am Chem Soc 2006; 128: 6310–6311. [DOI] [PubMed] [Google Scholar]
  • 121. Ryu DH, Corey EJ. Triflimide activation of a chiral oxazaborolidine leads to a more general catalytic system for enantioselective diels‐alder addition. J Am Chem Soc 2003; 125: 6388–6390. [DOI] [PubMed] [Google Scholar]
  • 122. Knapp S, Levorse AT. Synthesis and reactions of iodo lactams. J Org Chem 1988; 53: 4006–4014. [Google Scholar]
  • 123. Schreiber E, Zbiral E, Kleineidam RG, Schauer R. Structural variations on N‐acetylneuraminic acid. 20. Synthesis of some 2,3‐didehydro‐2‐deoxysialic acids structurally varied at C‐4 and their behavior towards sialidase from Vibrio cholerae. Liebigs Ann Chem 1991; 129–134. [DOI] [PubMed] [Google Scholar]
  • 124. von Itzstein M, Wu W‐Y, Kok GB, Pegg MS, Dyason JC, Jin B, Van Phan T, Smythe ML, White HF, Oliver SW, Colman PM, Varghese JN, Ryan DM, Woods JM, Bethell RC, Hotham VJ, Cameron JM, Penn CR. Rational design of potent sialidase‐based inhibitors of influenza virus replication. Nature 1993; 263: 418–423. [DOI] [PubMed] [Google Scholar]
  • 125. Chandler M, Bamford MJ, Conroy R, Lamont B, Patel B, Patel VK, Steeples IP, Storer R, Weir NG, Wright M, Williamson C. Synthesis of the potent influenza neuraminidase inhibitor 4‐guanidino Neu5Ac2en. X‐ray molecular structure of 5‐acetamido‐4‐amino‐2,6‐anhydro‐3,4,5‐trideoxy‐d‐erythro‐l‐gluco‐nonionic acid. J Chem Soc, Perkin Trans 1 1995; 1173–1179. [Google Scholar]
  • 126. Scheigetz J, Zamboni R, Bernstein MA. Boy B, A synthesis of 4‐guanidino‐2‐deoxy‐2,3‐didehydro‐N‐acetylneuraminic acid. Org Prep Proc Int 1995; 27(6): 637–644. [Google Scholar]
  • 127. von Itzstein M, Jin B, Wu W‐Y, Chandler M. A convenient method for the introduction of nitrogen and sulfur at C‐4 on a sialic acid analog. Carbohydr Res 1993; 244: 181–185. [Google Scholar]
  • 128. Warner TG, O'Brien JS. Synthesis of 2′‐(4‐methylumbelliferyl)‐?(‐D‐N‐acetylneuraminic acid and detection of skin fibroblast neuraminidase in normal humans and in sialidosis. Biochemistry 1979; 18: 2783–2787. [DOI] [PubMed] [Google Scholar]
  • 129. von Itzstein M, Wu W‐Y, Jin B. The synthesis of 2,3‐didehydro‐2,4‐dideoxy‐4‐guanidinyl‐N‐acetylneuraminic acid: A potent influenza virus sialidase inhibitor. Carbohydr Res 1994; 259(2): 301–305. [DOI] [PubMed] [Google Scholar]
  • 130. Liu K‐G, Yan S, Wu Y‐L, Yao Z‐J. Synthesis of 4‐Azido‐4‐deoxy‐5‐Neu‐5,7,8,9Ac42en1Me. A key intermediate for the synthesis of GG167 from d‐glucono‐δ‐lactone. Org Lett 2004; 6(13): 2269–2272. [DOI] [PubMed] [Google Scholar]
  • 131. Liu K‐G, Zhou H‐B, Wu Y‐L, Yao Z‐J. Synthesis of a stable conformationally constrained 2,7‐anhydrosialic acid derivative, J Org Chem 2003; 68: 9528–9531. [DOI] [PubMed] [Google Scholar]
  • 132. Ikunaka M, Matsumoto J, Nishimoto Y. A concise synthesis of (2S, 3S)‐BocAHPBA and (R)‐BocDMTA, chiral building blocks for peptide‐mimetic HIV protease inhibitors, Tetrahedron Asymm 2002; 13: 1201–1208. [Google Scholar]
  • 133. Liu K‐G, Yan S, Wu Y‐L, Yao Z‐J. A New synthetic approach of Neu5Ac from d‐glucono‐?δ‐lactone. J Org Chem 2002; 67: 6758–6763. [DOI] [PubMed] [Google Scholar]
  • 134. Gregar TQ, Gervay‐Hague J. Synthesis of oligomers derived from amide‐linked neuraminic acid analogues. J Org Chem 2004; 69: 1001–1009. [DOI] [PubMed] [Google Scholar]
  • 135. Li L‐S, Wu Y‐L. Recent Progress in syntheses of higher 3‐deoxy‐2‐ulosonic acids and their derivatives. Curr Org Chem 2003; 7: 447–475. [Google Scholar]
  • 136. Zhang J, Xu W. Recent advances in anti‐influenza agents with neuraminidase as target. Mini‐Rev Med Chem 2006; 6(4): 429–448. [DOI] [PubMed] [Google Scholar]
  • 137. Smith PW, Robinson JE, Evans DE, Sollis SL, Howe PD, Trivedi N, Bethell RC. Sialidase inhibitors related to zanamivir: Synthesis and biological evaluation of 4H‐pyran 6‐ether and ketone. Bioorg Med Chem Lett 1999; 9: 601–604. [DOI] [PubMed] [Google Scholar]
  • 138. Kim CU, Lew W, Williams MA, Liu H, Zhang L, Swaminathan S, Bischofberger N, Chen MS, Mendel DB, Tai CY, Laver WG, Stevens RC. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: Design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti‐influenza activity. J Am Chem Soc 1997; 119: 681–690. [DOI] [PubMed] [Google Scholar]
  • 139. Kim CU, Lew W, Williams MA, Wu H, Zhang L, Chen X, Escarpe PA, Mendel DB, Laver WG, Stevens RC. Structure‐activity relationship studies of novel carbocyclic influenza neuraminidase inhibitors. J Med Chem 1998; 41: 2451–2460. [DOI] [PubMed] [Google Scholar]
  • 140. Lew W, Escarpe PA, Mendel DB, Sweeny DJ, Kim CU. Stereospecific Synthesis of a GS4104 metabolite: Determination of absolute stereochemistry and influenza neuraminidase inhibitory activity. Bioorg Med Chem Lett 1999; 9: 2811–2814. [DOI] [PubMed] [Google Scholar]
  • 141. Bianco A, Brufani M, Manna F, Melchioni C. Synthesis of a Carbocyclic sialic acid analogue for the inhibition of influenza virus neuraminidase. Carbohydr Res 2001; 332: 23–31. [DOI] [PubMed] [Google Scholar]
  • 142. Smith PW, Sollis SL, Howes PD, Cherry PC, Starkey ID, Cobley KN, Weston H, Scicinski J, Merritt A, Whittington A, Wyatt P, Taylor N, Green D, Bethell R, Madar S, Fenton RJ, Morley PJ, Pateman T, Beresford A. Dihydropyrancarboxamides related to zanamivir: A new series of inhibitors of influenza virus sialidases. 1. Discovery, synthesis, biological activity, and structure‐activity relationships of 4‐guanidino‐ and 4‐amino‐4H‐pyran‐6‐carboxamides. J Med Chem 1998; 41: 787–797. [DOI] [PubMed] [Google Scholar]
  • 143. Masuda T, Shibuya S, Arai M, Yoshida S, Tomzawa T, Ohno A, Yamashita M, Honda T. Synthesis and anti‐influenza evaluation of orally active bicyclic ether derivatives related to zanamivir. Bioorg Med Chem Lett 2003; 13: 669–673. [DOI] [PubMed] [Google Scholar]
  • 144. Wyatt PG, Coomber BA, Evans DN, Jack TI, Fulton HE, Wonacott AJ, Colman P, Varghese J. Sialidase inhibitors related to zanamivir. Further SAR studies of 4‐amino‐4H‐pyran‐2‐carboxylic acid‐6‐propylamides. Bioorg Med Chem Lett 2001; 11: 669–673. [DOI] [PubMed] [Google Scholar]
  • 145. Smith PW, Whittington AR, Sollis SL, Howes PD, Taylor NR. Novel inhibitors of influenza sialidases related to zanamivir. Heterocyclic replacements of the glycerol side chain. Bioorg Med Chem Lett 1997; 7: 2239–2242. [Google Scholar]
  • 146. Bamford MJ, Castro Pichel J, Husman W, Patel B, Storer R, Weir NG. Synthesis of 6‐, 7‐ and 8‐carbon sugar analogues of potent anti‐influenza 2,3‐didehydro‐2,3‐dideoxy‐N‐acetylneuraminic acid derivatives. J Chem Soc Perkin Trans 1, 1995; 1181–1187. [Google Scholar]
  • 147. Smith PW, Starkey ID, Howes PD, Sollis SL, Keeling SP, Cherry PC, von Itzstein M, wu WY, Jin B. Synthesis and influenza virus sialidase inhibitory activity of analogues of 4‐guanidino‐Neu5Ac2en (GG167) with modified 5‐substituents. Eur J Med Chem 1996; 31: 143–150. [Google Scholar]
  • 148. Atigadda VR, Brouillette Duarte F, Babu YS, Bantia S, Chand P, Chu N, Montgomery JA, Walsh DA, Sudbeck E, Finley J, Air GM, Luo M, Laver GW. Hydrophobic benzoic acids as inhibitors of influenza neuraminidase. Bioorg Med Chem 1999; 7: 2487–2497. [DOI] [PubMed] [Google Scholar]
  • 149. Bianco A, Brufani M, Melchioni C. Aromatic sialic acid analogues as potential inhibitors of influenza virus neuraminidase. Il Farmaco 2001; 56: 305–309. [DOI] [PubMed] [Google Scholar]
  • 150. Jedrzejas MJ, Singh S, Brouillette WJ, Laver WG, Air GM, Luo M. Structures of aromatic inhibitors of influenza virus neuraminidase. Biochemistry 1995; 34: 3144. [DOI] [PubMed] [Google Scholar]
  • 151. Chand P, Babu YS, Bantia S, Chu N, Cole LB, Kotian PL, Laver WG, Montgomery JA, Pathak VP, Petty SL, Shrout DP, Walsh DA, Walsh GM. Design and synthesis of benzoic acid derivatives as influenza neuraminidase inhibitors using structure‐based drug design. J Med Chem 1997; 40: 4030–4052. [DOI] [PubMed] [Google Scholar]
  • 152. Knapp S, Zhao D. Synthesis of the sialidase inhibitor siastatin B. Org Lett 2000; 2(25): 4037–4040. [DOI] [PubMed] [Google Scholar]
  • 153. Shitara E, Nishimura Y, Nerome K, Hiramoto Y, Takeuchi T. Synthesis of 6‐acetamido‐5‐amino‐ and 5‐guanidino‐3,4‐dehydro‐N‐(2‐ethylbutyryl)‐3‐piperidinecarboxylic acids related to zanamivir and oseltamivir, inhibitors of influenza virus neuraminidases. Org Lett 2000; 2(24): 3837–3840. [DOI] [PubMed] [Google Scholar]
  • 154. Smith PW, Sollis SL, Howes PD, Cherry PC, Starkey ID, Cobley KN, Weston H, Scicinski J, Merritt A, Whittington A, Wyatt P, Taylor N, Green D, Bethell R, Madar S, Fenton RJ, Morley PJ, Pateman T, Beresford A. Dihydropyrancarboxamides related to zanamivir: A new series of inhibitors of influenza virus sialidases. 1. Discovery, synthesis, biological activity, and structure‐activity relationships of 4‐guanidino‐ and 4‐amino‐4H‐pyran‐6‐carboxamides. J Med Chem 1998; 41(6): 787–797. [DOI] [PubMed] [Google Scholar]
  • 155. Zhang L, Williams MA, Mendel DB, Escarpe PA, Chen X, wang K‐Y. Graves BJ, Lawton G, Kim CU. Synthesis and evaluation of 1,4,5,6‐tetrahydropyridazine derivatives as influenza neuraminidase inhibitors. Bioorg Med Chem Lett 1999; 9: 1751–1756. [DOI] [PubMed] [Google Scholar]
  • 156. Kok GB, Campell M, Mackey B, von Itzstein M. Synthesis and biological evaluation of sulfur isosters of the potent influenza virus sialidase inhibitors 4‐amino‐4‐deoxy‐ and 4‐deoxy‐4‐guanidino‐Neu5Ac2en. J Chem Soc Perkin Trans 1 1996; 2811–2815. [Google Scholar]
  • 157. Sasaki K, Nishida Y, Uzawa H, Kobayashi K. N‐Acetyl‐6‐sulfo‐d‐glucosamine as a promising mimic of N‐acetyl neuraminic acid. Bioorg Med Chem Lett 2003; 13: 2821–2823. [DOI] [PubMed] [Google Scholar]
  • 158. MacDonald SJF, Cameron R, Demaine DA, Fenton RJ, Foster G, Gower D, Hamblin JN, Hamilton S, Hart GJ, Hill AP, Inglis GGA, Jin B. Jones HT, McConnell DB, McKimm‐Breschkin J, Mills G, Nguyen V, Owens IJ, Parry N, Shanahan SE, Smith D, Watson KG, Wu W‐Y, Tucker SP. Dimeric zanamivir conjugates with various linking groups are potent, long‐lasting inhibitors of influenza neuraminidase including H5N1 avian influenza. J Med Chem 2005; 48(8): 2964–2971. [DOI] [PubMed] [Google Scholar]
  • 159. Watson KG, Cameron R, Fenton RJ, Gower D, Hamilton S, Jin B, Krippner GY, Luttick A, McConnell D, MacDonald SJF, Mason AM, Nguyen V, Tucker SP, Wu W‐Y. Highly potent and long‐acting trimeric and tetrameric inhibitors of influenza virus neuraminidase. Bioorg Med Chem Lett 2004; 14: 1589–1592. [DOI] [PubMed] [Google Scholar]
  • 160. Masuda T, Yoshida S, Arai M, Kaneko S, Yamashita M, Honda T. Synthesis and anti‐influenza evaluation of polyvalent sialidase inhibitors bearing 4‐guanidino‐Neu5Ac2en derivatives. Chem Pharm Bull 2003; 51(12): 1386–1398. [DOI] [PubMed] [Google Scholar]
  • 161. Sweet C, Jakeman KJ, Bush K, Wagaman PC, Mckown LA, Streeter AJ, Desai‐Krieger D, Chand P, Babu YS. Oral administration of cyclopentane neuraminidase inhibitors protects ferrets against influenza virus infection. Antimicrob Agents Chemother 2002; 46(4): 996–1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162. Smee DF, Huffman JH, Morrison AC, Barnard DL, Sidwell RW. Cyclopentane neuraminidase inhibitors with potent in vitro anti‐influenza virus activities. Antimicrob Agents Chemother 2001; 45(3): 743–748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163. Bantia S, Parker CD, Ananth SL, Horn LL, Andries K, Chand P, Kotian PL, Deghani A, El‐Kattan Y, Lin T, Hutchison TL, Montgomery JA, Kellog DL, Babu YS. Comparison of the anti‐influenza virus activity of RWJ‐270201 with those of oseltamivir and zanamivir. Antimicrob Agents Chemother 2001; 45(4): 1162–1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164. Bantia S, Arnold C.S, Parker CD, Upshaw R, Chand P. Anti‐influenza virus activity of peramivir in mice with single intramuscular injection. Antiviral Res 2006; 69: 39–45. [DOI] [PubMed] [Google Scholar]
  • 165. Chand P, Bantia S, Kotian PL, El‐Kattan Y, Lin TH, Babu YS. Comparison of the anti‐influenza virus activity of cyclopentane derivatives with oseltamivir and zanamivir in vivo. Bioorg Med Chem 2005; 13: 4071–4077. [DOI] [PubMed] [Google Scholar]
  • 166. Bamford MJ, Pichel JC, Husman W, Patel B, Storer R, Weir NG. Synthesis of 6‐, 7‐ and 8‐carbon sugar analogues of potent anti‐influenza 2,3‐didehydro‐2,3‐dideoxy‐N‐acetylneuraminic acid derivatives. J Chem Soc Perkin Trans 1 1995; 1181–1187. [Google Scholar]
  • 167. Chand P, Kotian PL, Deghani A, El‐Kattan Y, Lin T‐H, Hutchison TL, Babu YS, Bantia S, Elliott AJ, Montgomery JA. Systematic structure‐based design and stereoselective synthesis of novel multisubstituted cyclopentane derivatives with potent antiinfluenza activity. J Med Chem 2001; 44: 4379–4392. [DOI] [PubMed] [Google Scholar]
  • 168. Chand P, Babu S, Bantia S, Rowland S, Dehghani A, Kotian PL, Hutchison TL, Ali S, Brouillette W, El‐Kattan Y, Lin T‐H. Syntheses and neuraminidase inhibitory activity of multisubstituted cyclopentane amide derivatives. J Med Chem 2004; 47: 1919–1929. [DOI] [PubMed] [Google Scholar]
  • 169. Babu YS, Chand P, Bantia S, Kotian P, Dehghani A, El‐Kattan Y, Lin T‐H, Hutchison TL, Elliott AJ, Parker CD, Ananth SL, Horn LL, Laver GW, Montgomery JA. BCX‐1812 (RWJ‐270201): Discovery of a novel, highly potent, orally active, and selective influenza neuraminidase inhibitor through structure‐based drug design. J Med Chem 2000; 43: 3482–3486. [DOI] [PubMed] [Google Scholar]
  • 170. Kati WM, Montgomery D, Carrick R, Gubareva L, Maring C, McDaniel K, Steffy K, Molla A, Hayden F, Kempf D, Kohlbrenner W. In vitro characterization of A‐315675, a highly potent inhibitor of A and B strain influenza virus neuraminidases and influenza virus replication. Antimicrob Agents Chemother 2002; 46(4): 1014–1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 171. Casiraghi G, Rassu G, Spanu P, Pinna L. N‐(tert‐Butoxycarbonyl)‐2‐(tert‐butyldimethylsiloxy)pyrrole: A promising compound for synthesis of chiral nonracemic hydroxylated pyrrolidine derivatives. J Org Chem 1992; 57(14): 3760–3763. [Google Scholar]
  • 172. Davis FA, Chen B‐C. Asymmetric synthesis of amino acids using sulfinimines (thiooxime S‐oxides). Chem Soc Rev 1998; 27(1): 13–18. [Google Scholar]
  • 173. Barnes DM, McLaughlin MA, Oie T, Rasmussen MW, Stewart KD, Wittenberger SJ. Synthesis of an influenza neuraminidase inhibitor intermediate via a highly diastereoselective coupling reaction. Org Lett 2002; 4(9): 1427–3140. [DOI] [PubMed] [Google Scholar]
  • 174. Hanessian S, Bayrakdarian M, Luo X. Total Synthesis of A‐315675: A potent inhibitor of influenza neuraminidase. J Am Chem Soc 2002; 124(17): 4716–4721. [DOI] [PubMed] [Google Scholar]
  • 175. DeGoey DA, Chen H‐J, Flosi WJ, Grampovnik DJ, Yeung CM, Klein LL, Kempf DJ. Enantioselective synthesis of antiinfluenza compound A‐315675. J Org Chem 2002; 67(16): 5445–5453. [DOI] [PubMed] [Google Scholar]
  • 176. Wang GT, Chen Y, Wang S, Gentles R, Sowin T, kati W, Muchmore S, Giranda V, Stewart K, Sham H, Kempf D, Laver WG. Design, Synthesis, and structural analysis of influenza neuraminidase inhibitors containing pyrrolidine cores. J Med Chem 2001; 44: 1192–1201. [DOI] [PubMed] [Google Scholar]
  • 177. Maring CJ, Stoll VS, Zhao C, Sun M, Krueger AC, Stewart KD, Madigan DL, Kati WM, Xu Y, Carrick RJ, Montgomery DA, Kempf‐Grote A, Marsh KC, Molla A, Steffy KR, Sham HL, Laver WG, Gu Y‐g, Kempf DJ, Kohlbrenner WE. Structure‐based characterization and optimization of novel hydrophobic binding interactions in a series of pyrrolidine influenza neuraminidase inhibitors. J Med Chem 2005; 48: 3980–3990. [DOI] [PubMed] [Google Scholar]
  • 178. Brouillette WJ, Bajpai SN, Ali SM, Velu SE, Atigadda VR, Lommer BS, Finley JB, Luo M, Air GM. Pyrrolidinobenzoic acid inhibitors of influenza virus neuraminidase: Modifications of essential pyrrolidinone ring substituents. Bioorg Med Chem 2003; 11: 2739–2749. [DOI] [PubMed] [Google Scholar]
  • 179. Kati WM, Montgomery D, Maring C, Stoll VS, Giranda V, Chen X, Laver WG, Kohlbrenner W, Norbeck DW. Novel α‐ and β‐amino acid inhibitors of influenza virus neuraminidase. Antimicrob Agents Chemother 2001; 45(9): 2563–2570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 180. Wang GT, Wang S, Chen Y, Gentles R, Sowin T. Synthesis of 2‐substituted (±)(2R, 3R, 5R)‐tetrahydrofuran‐3,5‐dicarboxylic acid derivatives. J Org Chem 2001; 66: 2052–2056. [DOI] [PubMed] [Google Scholar]
  • 181. Wang GT, Wang S, Gentles R, Sowin T, Maring CJ, Kempf DJ, Kati WM, Stoll V, Stewart KD, Laver G. Design, synthesis, and structural analysis of inhibitors of influenza neuraminidase containing a 2,3‐disubstituted tetrahydrofuran‐5‐carboxylic acid core. Bioorg Med Chem Lett 2005; 15: 125–128. [DOI] [PubMed] [Google Scholar]
  • 182. Travis SM, Singh PK, Welsh MJ. Antimicrobial peptides and proteins in the innate defense of the airway surface. Curr Opin Immunol 2001; 13(1): 89–95. [DOI] [PubMed] [Google Scholar]
  • 183. Daher KA, Selsted ME, Lehrer RI. Direct inactivation of viruses by human granulocyte defensins. J Virol 1986; 60(3): 1068–1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 184. Hill CP, Yee J, Selsted ME, Eisenberg D. Crystal structure of defensin HNP‐3, an amphiphilic dimer: Mechanisms of membrane permeabilization. Science 1991; 251(5000): 1481–1485. [DOI] [PubMed] [Google Scholar]
  • 185. Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schroder JM, Wang JM, Howard OMZ, Oppenheim JJ. β‐Defensins: Linking innate and adaptive immunity through dendritic and T cell CCR6. Science 1999; 286(5439): 525–528. [DOI] [PubMed] [Google Scholar]
  • 186. Ge Q, Filip L, Bai A, Nguyen T, Eisen HN, Chen J. Inhibition of influenza virus production in virus‐infected mice by RNA interference. Proc Natl Acac Sci USA 2004; 101(23): 8676–8681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 187. Tompkins SM, Lo CY, Tumpey TM, Epstein SL. Protection against lethal influenza virus challenge by RNA interference in vivo. Proc Natl Acad Sci USA 2004; 101(23): 8682–8686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188. Li BJ, Tang Q, Cheng D, Qin C, Xie FY, Wei Q, Xu J, Liu Y, Zheng BJ, Woodle MC, Zhong N, Lu PY. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nature Med 2005; 11(9): 944–951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 189. Vaillant A, Lebel A, Goyette N, Boivin G, Juteau J‐M, Wyde P. Rep 9: A potent broad spectrum aerosol prophylaxis and therapy against influenza infection in vivo. Antiviral Res 2006; 70: A52, Abstract 94. [Google Scholar]
  • 190. Iversen P, Stein D, Puthavathana P, Kobasa D, Burger D, Pastey M, Bestwick R, Chen J. Inhibition of multiple influenza A subtypes in cell culture with antisense phosphorodiamidate morpholino oligomers. Antiviral Res 2006; 70: A49, Abstract 80. [Google Scholar]

Articles from Medicinal Research Reviews are provided here courtesy of Wiley

RESOURCES