Abstract
Despite extraordinary progress that has recently been made in biomedical sciences, viral infectious diseases still remain one of the most serious world health problems. Among the different types of viruses, those using RNA as their genetic material (RNA viruses and retroviruses) are especially dangerous. At present there is no medicine allowing an effective treatment of RNA‐based virus infections. Many RNA viruses and retroviruses need only a few weeks to escape immune response or to produce drug‐resistant mutants. This seems to be the obvious consequence of the unusual genetic variability of RNA‐based viruses. An individual virus does not form a homogenous population but rather a set of similar but not identical variants. In consequence, RNA‐based viruses can easily adapt to environmental changes, also those resulting from immune system response or therapy. The modifications identified within viral genes can be divided into two groups: point mutations and complex genome rearrangements. The former arises mainly during error‐prone replication, whereas RNA recombination and generic reassortment are responsible for the latter. This article shortly describes major strategies used to control virus infections. Then, it presents the various mechanisms generating the genetic diversity of RNA‐based viruses, which are most probably the main cause of clinical problems. © 2003 Wiley Periodicals, Inc. Med Res Rev, 23, No. 4, 488–518, 2003
Keywords: RNA‐based viruses, viral infections—prevention and therapy, genetic variability, error‐prone replication, RNA recombination, genetic reassortment
REFERENCES
- 1. Whitton JL, Oldstone MBA. Immune response to virus In: Fields BN, Knipe DM, Howley PM, et al., editors. Fields virology. Third edition Philadelphia: Lippincott‐Raven Publishers; 1996. p 345–374. [Google Scholar]
- 2. Ahmed R, Nathanson N. Immune response to viral infections In: Viral pathogenesis and immunity. Philadelphia: Lippincott Wuilliams & Wilkins; 2002. p 53–69. [Google Scholar]
- 3. Nash T. Immunity to viruses In: Roitt J, Brostoff J, Male D, editors. Immunology. London: Harcourt Publishers, Ltd.; 2001. p 235–244. [Google Scholar]
- 4. Murphy BR, Chanock RM. Immunization against virus diseases In: Fields BN, Knipe DM, Howley PM, et al., editors. Fields virology. Third Edition Philadelphia: Lippincott‐Raven Publishers; 1996. p 476–497. [Google Scholar]
- 5. Holland J, Spindler K, Horodyski F, Grabau E, Nichol S, Van de Pol S. Rapid evolution of RNA genomes. Science 1982; 215: 1577–1585. [DOI] [PubMed] [Google Scholar]
- 6. Pathak VK, Hu W‐S. “Might as well Jump!” Temple switching by retroviral reverse transcriptase, defective genome formation, and recombination. Sem Virol 1997; 8: 141–150. [Google Scholar]
- 7. Holland J, DelaTorre JC, Steinhauer DA. RNA virus populations as quasispecies In: Holland J, editor. Genetic diversity of RNA viruses. Springer Verlag: Heidelberg; 1992. p 1–20. [Google Scholar]
- 8. Domingo E, Holland J, Biebricher C, Eigen M. Quasi‐species: The concept and the word In: Gibbs AG, Calisher CH, Garcia‐Arenal F, editors. Molecular basis of virus evolution. Cambridge: Cambridge University Press; 1995. p 181–191. [Google Scholar]
- 9. Eigen M. On the nature of virus quasispecies. Trends Microbiol 1996; 4: 216–217. [DOI] [PubMed] [Google Scholar]
- 10. Domingo E, Escarmis C, Sevilla N, Baranowski E. Population dynamics in the evolution of RNA viruses. Adv Exp Med Biol 1998; 440: 721–727. [DOI] [PubMed] [Google Scholar]
- 11. Zeitlin L, Cone RA, Moench TR, Whaley KJ. Preventing infectious diseases with passive immunization. Microbes Infect 2000; 2: 701–708. [DOI] [PubMed] [Google Scholar]
- 12. Sawyer LA. Antibodies for the prevention and treatment of viral diseases. Antiviral Res 2000; 47: 55–77. [DOI] [PubMed] [Google Scholar]
- 13. Nydegger UE, Mohacsi PJ, Escher R, Morell A. Clinical use of intravenous immunoglobulins. Vox Sanguinis 2000; 78(Suppl 2): 191–195. [PubMed] [Google Scholar]
- 14. Zeitlin L, Cone RA, Whaley KJ. Using monoclonal antibodies to prevent mucosal transmission of epidemic infectious diseases. Emerg Infect Dis 1999; 5: 54–64. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Fenner F, Henderson DA, Arita I, Jezek Z, Ladny ID. Smallpox and its eradication Geneva, Switzerland: World Health Organization; 1988. [Google Scholar]
- 16. Sabin AB. Oral poliovirus vaccine: History of its development and use and current challenge to eliminate poliomyelitis from the world. J Infect Dis 1985; 151: 420–436. [DOI] [PubMed] [Google Scholar]
- 17. Ada G. Vaccines and vaccination. N Engl J Med 2001; 345: 1042–1053. [DOI] [PubMed] [Google Scholar]
- 18. Horstmann DM. Viral vaccines and their ways. Rev Infect Dis 1979; 1: 502–516. [DOI] [PubMed] [Google Scholar]
- 19. Horstmann DM. Control of poliomyelitis: Continuing paradox. J Infect Dis 1982; 146: 540–551. [DOI] [PubMed] [Google Scholar]
- 20. Baez M, Palese P, Kilbourne ED. Gene composition of high‐yielding influenza vaccine strains obtained by recombination. J Infect Dis 1980; 141: 362–369. [DOI] [PubMed] [Google Scholar]
- 21. Andre FE, D'Hondt E, Delem A, Safary A. Clinical assessment of the safety and efficacy of an inactivated hepatitis A vaccine: Rationale and summary of findings. Vaccine 1992; 10: 160–168. [DOI] [PubMed] [Google Scholar]
- 22. Krugman S. The newly licensed hepatitis B vaccine: Characteristics and indications for use. JAMA 1982; 247: 2012–2015. [PubMed] [Google Scholar]
- 23. Szmuness W, Stevens CE, Harley HJ, Zang EA, Oleszko WR, William DC, Sadovsky R, Morrison JM, Kellner A. N Hepatitis B vaccine demonstration of efficacy in a controlled clinical trial in a high‐risk population in the Unites States. Engl J Med 1980; 303: 833–841. [DOI] [PubMed] [Google Scholar]
- 24. Dong J, Hunter E. Analysis of retroviral assembly using a vaccinia/T7–polymerase complementation system. Virology 1993; 194: 192–199. [DOI] [PubMed] [Google Scholar]
- 25. Gonzalez SA, Affranchino JL, Gelderblom HR, Burny A. Assembly of the matrix protein of Simian immunodeficiency virus in to virus‐like particles. Virology 1993; 194: 548–556. [DOI] [PubMed] [Google Scholar]
- 26. Kleid DG, Yansura D, Small B, Dowbenko D, Moore DM, Grubman MJ, McKercher PD, Morgan DO, Robertson BH, Bachrach HL. Cloned viral protein vaccine for foot‐and‐mouth disease: Response in cattle and swine. Science 1981; 214: 1125–1129. [DOI] [PubMed] [Google Scholar]
- 27. Lin Y‐L, Borenstein LA, Ahmed R, Wettstein FQ. Cotton tail rabbit papillomavirus L1 protein‐based vaccines: Protection is achieved only with a full‐length, nondenatured product. J Virol 1993; 67: 4154–4162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. van Drunen Little‐van den Hurk S, Parker MD, Massie B. Protection of cattle from BHV‐1 infection by immunization with recombinant glycoprotein gIV. Vaccine 1993; 11: 25–35. [DOI] [PubMed] [Google Scholar]
- 29. Lasky LA, Dowbenko D, Simonsen C, Berman PW. Production of a herpes simplex virus subunit vaccine by genetically engineered mammalian cell lines In: Lerner RA, Chanock RM, editors. Modern approaches to vaccines. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1984. p 189–194. [Google Scholar]
- 30. Imamura T, Araki M, Miyanohara A, Nakao J, Yonemura H, Ohtomo N, Matsubara K. Expression of hepatitis B virus middle and large surface antigen genes in Sacharomyces cerevisiae . J Virol 1987; 61: 3543–3549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Luckow VA, Summers MD. Trends in the development of baculovirus expression vectors. Biotechnology 1988; 6: 47–55. [Google Scholar]
- 32. Kapusta J, Modelska A, Figlerowicz M, Pniewski T, Letellier M, Lisowa O, Yusibov V, Koprowski H, Płucienniczak A, Legocki AB. A plant‐derived edible vaccine against hepatitis B virus. FASEB J 1999; 13: 1796–1799. [DOI] [PubMed] [Google Scholar]
- 33. Bittle JL, Houghten RA, Alexander H, Shinnick TM, Sutcliffe JG, Lerner RA, Rowlands DJ, Brown F. Protection against foot‐and‐mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence. Nature 1982; 298: 30–33. [DOI] [PubMed] [Google Scholar]
- 34. Langbeheim H, Arnon R, Sela M. Antiviral effect on MS‐2 coliphage obtained with a synthetic antigen. Proc Natl Acad Sci USA 1976; 73: 4636–4640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35. Gaulton GN, Sharpe AH, Chang DW, Fields BN, Greene MI. Syngeneic monoclonal internal image anti‐idiotops as prophylactic vaccines. J Immunol 1986; 137: 2930–2936. [PubMed] [Google Scholar]
- 36. McClintock PR, Prabhakar BS, Notkins AL. Anti‐idiotypic antibodies to monoclonal antibodies that neutralize coxackievirus B4 do not recognize viral receptors. Virology 1986; 150: 352–360. [DOI] [PubMed] [Google Scholar]
- 37. Reagan KJ, Wunner WH, Wiktor TJ, Koprowski H. Anti‐idiotypic antibodies induce neutralizing antibodies to rabies virus glycoprotein. J Virol 1983; 48: 660–666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. Uytdehaag FGCM, Osterhaus ADME. Induction of neutralizing antibodies in mice against poliovirus type II with monoclonal anti‐idiotipic antibodies. J Immunol 1985; 134: 1225–1229. [PubMed] [Google Scholar]
- 39. Tang D‐C, DeVit M, Johnston SA. Genetic immunization is a simple method for eliciting an immune response. Science 1992; 356: 152–154. [DOI] [PubMed] [Google Scholar]
- 40. Schirmbeck R, Reimann J. Revealing the potential of DNA‐based vaccination: Lesson learned from the hepatitis B virus surface antigen. Biol Chem 2001; 382: 543–552. [DOI] [PubMed] [Google Scholar]
- 41. Hirsch MS, Kaplan JC, D'Aquila RT. Antiviral agents In: Fields BN, Knipe DM, Howley PM, et al., editors. Fields virology. Third edition Philadelphia: Lippincott‐Raven Publishers; 1996. p 431–466. [Google Scholar]
- 42. Richman DD. HIV chemotherapy. Nature 2001; 410: 995–1001. [DOI] [PubMed] [Google Scholar]
- 43. Air GM, Luo M. Structure‐guided therapeutic strategies In: Chiu W, Burnett RM, Garcea RL, editors. Structural biology of viruses. New York: Oxford University Press; 1997. p 411–431. [Google Scholar]
- 44. Prisbe EJ, Chen MS. Design of nucleoside analog inhibitors of herpesvirus polymerases. Methods Enzymol 1996; 275: 425–439. [DOI] [PubMed] [Google Scholar]
- 45. Tucker TJ, Lumma WC, Culberson JC. Development of nonnucleoside HIV reverse transcriptase inhibitors. Methods Enzymol 1996; 275: 440–471. [DOI] [PubMed] [Google Scholar]
- 46. Hoge CN, Straatsma TP, McCammon JA, Wlodawer A. Rational design of HIV protease inhibitors In: Chiu W, Burnett RM, Garcea RL, editors. Structural biology of viruses. New York: Oxford University Press; 1997. p 451–473. [Google Scholar]
- 47. Lam PYS, Jadhav PK, Eyermann CJ, Hodge CN, Ru Y, Bacheler LT, Meek JL, Otto MJ, Rayner MM, Wong YN. Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science 1994; 263: 380–384. [DOI] [PubMed] [Google Scholar]
- 48. Drach DJ. Purine nucleoside analogs as antiviral agents In: DeClercq E, Walker RT, editors. Targets for the design of antiviral drugs. New York: Plenum Press; 1984. [Google Scholar]
- 49. Chen H, Brown D, Gold L. Novel methods of generating specific oligonucleotide inhibitors of viral polymerases. Methods Enzymol 1996; 275: 503–522. [DOI] [PubMed] [Google Scholar]
- 50. Ellington S, Szostak J. In vitro selection of RNA molecules that bind specific ligands. Nature 1990; 346: 818–820. [DOI] [PubMed] [Google Scholar]
- 51. Uhlenback OC. A small catalytic oligoribonucleotide. Nature 1987; 328: 596–600. [DOI] [PubMed] [Google Scholar]
- 52. Sarver N, Cantin EM, Chang PS, Zaia JA, Ladne PA, Stephens DA, Rossi JJ. Ribozymes as potential anti‐HIV‐1 therapeutic agents. Science 1990; 247: 1222–1225. [DOI] [PubMed] [Google Scholar]
- 53. Dropulic B, Lin NH, Martin MA, Jeang K‐T. Functional characterization of a U5 ribozyme: Intracellular suppression of human immunodeficiency virus type 1 expression. J Virol 1992; 66: 1432–1441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54. Ojwang JO, Hempel A, Looney DJ, Wong‐Staal F, Rappaport J. Inhibition of human immunodeficiency virus type 1 expression by a hairpin ribozyme. Proc Natl Acad Sci USA 1992; 89: 10802–10806. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55. Shippy R, Lockner R, Farnsworth M, Hampel A. The hairpin ribozyme. Discovery, mechanism, and development for gene therapy. Mol Biotechnol 1999; 12: 117–129. [DOI] [PubMed] [Google Scholar]
- 56. Vilcek J, Le J. Immunology of cytokines: An introduction In: Thomson AW, editor. The cytokine handbook. Second edition London: Academic Press; 1994. p 1–19. [Google Scholar]
- 57. Vilcek J, Sen GC. Interferons and other cytokines In: Fields BN, Knipe DM, Howley PM, et al., editors. Fields virology. Third Edition Philadelphia: Lippincott‐Raven Publishers; 1996. p 375–399. [Google Scholar]
- 58. Bazan JF. A novel family of growth factor receptors: A common binding domain in the growth hormone, prolactin, erythropoietin and IL‐6 receptors, and the p75 IL‐2 receptor β‐chain. Biochem Biophys Res Commun 1989; 164: 788–795. [DOI] [PubMed] [Google Scholar]
- 59. Chong KL, Feng L, Schappert K, Meurs E, Donahue TF, Friesen JD, Hovanessian AG, Williams BR. Human p68 kinase exhibits growth suppression in yeast and homology to the translational regulator GCN2. EMBO J 1992; 11: 1553–1562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60. Ruff‐Jamison S, Chen K, Cohen S. Induction by EGF and interferon‐γ of tyrosine phosphorylated DNA‐binding proteins in mouse liver nuclei. Science 1993; 261: 1733–1736. [DOI] [PubMed] [Google Scholar]
- 61. Sadowski HB, Shuai K, Darnell JE, Gilman MZ. A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science 1993; 261: 1739–1744. [DOI] [PubMed] [Google Scholar]
- 62. Campbell IL. Cytokines in viral diseases. Curr Opin Immunol 1991; 3: 486–491. [DOI] [PubMed] [Google Scholar]
- 63. De Maeyer E, De Maeyer‐Guignard J. Interferons and other regulatory cytokines. New York: John Wiley and Sons; 1988. [Google Scholar]
- 64. Finter NB, Oldham RK. Interferon: In vivo and clinical studies. Vol. 4 Amsterdam: Elsevier; 1985. [Google Scholar]
- 65. Havell EA, Hayes TG, Vilcek J. Synthesis of two distinct interferons by human fibroblasts. Virology 1978; 89: 330–334. [DOI] [PubMed] [Google Scholar]
- 66. Nabel GJ. Challenges and opportunities for development of an AIDS vaccine. Nature 2001; 410: 1002–1007. [DOI] [PubMed] [Google Scholar]
- 67. Gagneten S, Feinstone SM. Hepatitis C vaccines In: Liang TJ, Hoofnagle JH, editors. Biomedical research reports. Hepatitis C. San Diego: Academic Press; 2000. p 469–486. [Google Scholar]
- 68. Oxford JS, Al‐Jabri AA, Stein CA, Levantis P. Analysis of resistance mutants of viral polymerases. Methods Enzymol 1996; 275: 555–600. [DOI] [PubMed] [Google Scholar]
- 69. Mchutchinson JG, Schalm SW. Therapy of chronic hepatitis C In: Liang TJ, Hoofnagle JH, editors. Biomedical research reports. Hepatitis C. San Diego: Academic Press; 2000. p 203–240. [Google Scholar]
- 70. Gooding LR. Virus proteins that counteract host immune defenses. Cell 1992; 71: 5–7. [DOI] [PubMed] [Google Scholar]
- 71. Andersson M, Paabo S, Nilsson T, Peterson PA. Impaired intracellular transport of class I MHC antigens as a possible means for adenoviruses to evade immune surveillance. Cell 1985; 43: 215–222. [DOI] [PubMed] [Google Scholar]
- 72. Jennings SR, Rice PL, Kloszewski WD, Anderson RW, Thompson KL, Tevethia SS. Effect of verpes simplex virus types 1 and 2 on surface expression of class I major histocompatibility antigens on infected cells. J Virol 1985; 56: 757–766. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73. Rinaldo CR, Jr . Modulation of major histocompatibility complex antigen expression by viral infection. Am J Pathol 1994; 144: 637–650. [PMC free article] [PubMed] [Google Scholar]
- 74. Paabo S, Nilsson T, Peterson PA. Adenoviruses of subgenera B, C, D, and E modulate cell‐surface expression of major histocompatibility complex class antigens. Proc Natl Acad Sci USA 1986; 83: 9665–9669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75. Scholz M, Hamann A, Blaheta RA, Auth MKH, Encke A, Markus BH. Cytomegalovirus‐ and interferon‐related effects on human endothelial cells: Cytomegalovirus infection reduces upregulation of HLA class II antigen expression after treatment with interferon γ. Hum Immunol 1992; 35: 230–238. [DOI] [PubMed] [Google Scholar]
- 76. Sedmak DD, Guglielmo AM, Knight DA, Birmingham DJ, Huang EH, Waldman WJ. Cytomegalovirus inhibits major histocompatibility class II expression on infected endothelial cells. Am J Pathol 1994; 144: 683. [PMC free article] [PubMed] [Google Scholar]
- 77. Marrack P, Kappler J. Subversion of the immune system by pathogens. Cell 1994; 76: 323–332. [DOI] [PubMed] [Google Scholar]
- 78. Spriggs MK. Cytokine and citokine receptor genes captured by viruses. Curr Opin Immunol 1994; 6: 526–529. [DOI] [PubMed] [Google Scholar]
- 79. Batschelet E, Domingo E, Weissmann C. The proportion of revertant and mutant phage in a growing population, as a function of mutation and growth rate. Gene 1976; 1: 27–32. [DOI] [PubMed] [Google Scholar]
- 80. Domingo E, Flavell RA, Weissmann C. In vitro site‐directed mutagenesis: Generation and properties of an infectious extracistronic mutant of bacteriophage Qbeta. Gene 1976; 1: 3–25. [DOI] [PubMed] [Google Scholar]
- 81. Domingo E, Sabo D, Taniguchi T, Weissmann C. Nucleotide sequence heterogeneity of an RNA phage population. Cell 1978; 13: 735–744. [DOI] [PubMed] [Google Scholar]
- 82. Eigen M, Schuster P. The hypercycle: A principles of natural self‐organization. Part A: Emergence of the hypercycle. Naturwissenschaften 1977; 64: 541–565. [DOI] [PubMed] [Google Scholar]
- 83. Eigen M, McCaskill J, Schuster P. Molecular quasi‐species. J Phys Chem 1988; 92: 6881–6891. [Google Scholar]
- 84. Mansky LM. Retrovirus mutation rates and their role in genetic variation. J Gen Virol 1998; 79: 1337–1345. [DOI] [PubMed] [Google Scholar]
- 85. Drake JW, Holland JJ. Mutation rates among RNA viruses. Proc Natl Acad Sci USA 1999; 96: 13910–13913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86. Coffin JM. Retroviridae: The viruses and their replication In: Fields BN, Knipe DM, Howley PM, et al., editors. Fields virology. Third Edition Philadelphia: Lippincott‐Raven Publishers; 1996. p 1767–1848. [Google Scholar]
- 87. Britten RJ. Rates of DNA sequence evolution differ between taxonomic groups. Science 1986; 231: 1393–1398. [DOI] [PubMed] [Google Scholar]
- 88. Smith DB, Inglis SC. The mutation rate and variability of eukaryotic viruses: An analytical review. J Gen Virol 1987; 68: 2729–2740. [DOI] [PubMed] [Google Scholar]
- 89. Parvin JD, Moscona A, Pan WT. Measurement of the mutation rates of animal viruses: Influenza A virus and poliovirus type 1. J Virol 1986; 59: 377–383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90. Steinhauer DA, Holland JJ. Direct method for quantitation of extreme polymerase error frequencies at selected single base sites in viral RNA. J Virol 1986; 57: 219–228. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91. Ward CD, Stokes MAM, Flanegan JB. Direct measurement of the poliovirus RNA polymerase error frequency in vitro . J Virol 1988; 62: 558–562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92. Mansky LM, Temin HM. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol 1995; 69: 5087–5094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93. Kim T, Mudry RA, Jr. , Rexrode CA, Pathak VK. Retroviral mutation rates and A‐to‐G hypermutation during different stages of retroviral replication. J Virol 1996; 70: 7594–7602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94. Pathak VK, Temin HM. Broad spectrum of in vivo forward mutations, hypermutations, and hotspots in a retroviral shuttle vector after a single replication cycle: Substitutions, frameshifts, and hypermutations. Proc Natl Acad Sci USA 1990; 87: 6019–6023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95. Pathak VK, Temin HM. Broad spectrum of in vivo forward mutations, hypermutations, and hotspots in a retroviral shuttle vector after a single replication cycle: Deletions and deletions with insertions. Proc Natl Acad Sci USA 1990; 87: 6024–6028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96. Drake JW, Charlesworth B, Charlesworth D, Crow JF. Rates of spontaneous mutation. Genetics 1998; 148: 1667–1686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97. Elena SF, Moya A. Effect of population patchiness and migration rates on the adaptation and divergence of vesicular stomatitis virus quasispecies populations. J Evol Biol 1999; 12: 1078–1088. [DOI] [PubMed] [Google Scholar]
- 98. Holland JJ, Domingo E, de la Torre JC, Steinhauer DA. Mutation frequencies at defined single codon sites in vesicular stomatitis virus and poliovirus can be increased only slightly by chemical mutagenesis. J Virol 1990; 64: 3960–3962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99. Ohman N, Bass BL. RNA editing In: Soll D, Nishimura S, Moore PB, editors. Comprehensive natural products chemistry. Prebiotic chemistry, molecular fossils, nucleosides, and RNA. Oxford: Elsevier Science, Ltd.; 1999. 97–108. [Google Scholar]
- 100. Bass BL, Weintraub H. A developmentally regulated activity that unwinds RNA duplexes. Cell 1987; 48: 607–613. [DOI] [PubMed] [Google Scholar]
- 101. Rebagliati MR, Melton DA. Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity Cell 1987; 48: 599–605. [DOI] [PubMed] [Google Scholar]
- 102. Bass BL. RNA editing and hypermutation by adenosine deamination. Trends Biochem Sci 1997; 22: 157–162. [DOI] [PubMed] [Google Scholar]
- 103. Maas S, Melcher T, Seeburg PH. Mammalian RNA‐dependent deaminases and edited mRNAs. Curr Opin Cell Biol 1997; 9: 343–349. [DOI] [PubMed] [Google Scholar]
- 104. Casey JL, Gerin JL. J Hepatitis D virus RNA editing: Specific modification of adenosine in the antigenomic RNA. Virology 1995; 69: 7593–7600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105. Lai MM. The molecular biology of hepatitis delta virus. Annu Rev Biochem 1995; 64: 259–286. [DOI] [PubMed] [Google Scholar]
- 106. Hirst GK. Genetic recombination with Newcastle disease virus, poliovirus, and influenza. Cold Spring Harbor Symp Quant Biol 1962; 27: 303–309. [DOI] [PubMed] [Google Scholar]
- 107. Ledinko N. Genetic recombination with poliovirus type 1 studies of crosses between a normal horse serum‐resistant mutant and several guanidine‐resistant mutants of the same strain. Virology 1963; 20: 107–119. [DOI] [PubMed] [Google Scholar]
- 108. Pringle CR. Evidence of genetic recombination in foot‐and‐mouth disease virus. Virology 1965; 25: 48–54. [DOI] [PubMed] [Google Scholar]
- 109. Lai MMC. RNA recombination in animal and plant viruses. Microbiol Rev 1992; 56: 61–79. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110. Simon AE, Bujarski JJ. RNA–RNA recombination and evolution in virus‐infected plants. Annu Rev Phytopathol 1994; 32: 337–362. [Google Scholar]
- 111. Coffin JM. Structure, replication, and recombination of retrovirus genomes. Some unifying hypotheses. J Gen Virol 1979; 199: 47–59. [DOI] [PubMed] [Google Scholar]
- 112. Zhang J, Temin HM. Rate and mechanism of nonhomologous recombination during a single cycle of retroviral replication. Science 1993; 259: 234–238. [DOI] [PubMed] [Google Scholar]
- 113. Khatchikian D, Orlich M, Rott R. Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the hemagglutinin gene of an influenza virus. Nature 1989; 340: 156–157. [DOI] [PubMed] [Google Scholar]
- 114. Mindich L, Qiao X, Onodera S, Gottlieb P, Strassman J. Heterologous recombination in the dsRNA bacteriophage Φ6. J Virol 1992; 66: 2605–2610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 115. Onodera S, Qiao X, Gottlieb P, Strassman J, Frilander M, Mindich L. RNA structure and heterologous recombination in the dsRNA bacteriophage Φ6. J Virol 1993; 67: 4914–4922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116. Suzuki Y, Gojobori T, Nakagomi O. Intragenic recombination in rotaviruses. FEBS Lett 1998; 427: 183–187. [DOI] [PubMed] [Google Scholar]
- 117. Plyusnin A, Kukkonen SKJ, Plyusnina A, Vapalahti O, Vaheri A. Transfection‐mediated generation of functionally competent Tula hantivirus with recombinant S RNA segment 2002; 21: 1497–1503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118. Meyers G, Tautz N, Dubovi EJ, Thiel H‐J. Viral cytopathogenenicity correlated with integration of ubiquitin‐coding sequences. Virology 1991; 180: 602–616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119. Green AM, Allison RF. Recombination between viral RNA and transgenic plant transcripts. Science 1994; 263: 1423–1425. [DOI] [PubMed] [Google Scholar]
- 120. Kirkegaard K, Baltimore D. The mechanism of RNA recombination in poliovirus. Cell 1986; 47: 433–443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121. Figlerowicz M, Nagy PD, Bujarski JJ. A mutation in the putative RNA polymerase gene inhibits nonhomologous, but not homologous, genetic recombination in RNA virus. Proc Natl Acad Sci USA 1997; 94: 2073–2078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 122. Figlerowicz M, Nagy PD, Tang N, Kao CC, Bujarski JJ. Mutations in the N‐terminus of the brome mosaic virus polymerase affect genetic RNA–RNA recombination. J Virol 1998; 72: 9192–9200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123. Stuhlmann H, Berg P. Homologous recombination of copackage retrovirus RNAs during reverse transcription. J Virol 1992; 66: 2378–2381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124. Figlerowicz M, Bujarski JJ. RNA recombination in brome mosaic virus, a model plus stranded RNA virus. Acta Biochim Pol 1998; 45: 1–23. [PubMed] [Google Scholar]
- 125. Alejska M, Kurzynska‐Kokorniak A, Broda M, Kierzek R, Figlerowicz M. How RNA viruses exchange their genetic material. Acta Biochim Pol 2001; 48: 391–407. [PubMed] [Google Scholar]
- 126. Nagy PD, Zhang C, Simon AE. Dissecting RNA recombination in vitro: Role of RNA sequences and the viral replicase. EMBO J 1998; 17: 2392–2403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127. Romanova LI, Blinov VM, Tolskaya EA, Viktorova EG, Kolesnikova MS, Guseva EA, Agol VI. The primary structure of crossovers regions of intertypic poliovirus recombinants: A model of recombination between RNA genomes. Virology 1986; 155: 202–213. [DOI] [PubMed] [Google Scholar]
- 128. Nagy PD, Bujarski JJ. Targeting the site of RNA–RNA recombination in brome mosaic virus with antisense sequences. Proc Natl Acad Sci USA 1993; 90: 6390–6394. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 129. Zhang X, Lai MMC. Unusual heterogenity of leader–mRNA fusion in a murine coronavirus: Implications for the mechanism of RNA transcription and recombination. J Virol 1994; 68: 6626–6633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130. Nagy PD, Simone AE. New insight into the mechanism of RNA recombination. Virology 1997; 235: 1–9. [DOI] [PubMed] [Google Scholar]
- 131. Chetverin AB, Chetverina HV, Demidenko AA, Ugarov VI. Nonhomologous RNA recombination in a cell‐free system: Evidence for a transesterification mechanism guided by secondary structure. Cell 1997; 88: 503–513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132. Temin HM. Retrovirus variation and reverse transcription: Abnormal strand transfer results in retrovirus genetic variation. Proc Natl Acad Sci USA 1993; 90: 6900–6903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 133. Zhang J, Temin HM. Retrovirus recombination depends on the length of sequence identity and is not error prone. J Virol 1994; 68: 2409–2414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134. Zhang J, Temin HM. 3′ Junctions of oncogene‐virus sequence and the mechanism for formation of highly oncogenic retroviruses. J Virol 1993; 67: 1747–1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135. Rueckert RR. Picornaviridae: The viruses and their replication In: Fields BN, Knipe DM, Howley PM, et al., editors. Fields virology. Third edition Philadelphia: Lippincott‐Raven Publishers; 1996. p 609–654. [Google Scholar]
- 136. King AMQ. Genetic recombination in positive strand RNA viruses In: Domingo P, Holland JJ, Ahlquist P, editors. RNA genetics. Vol. 2 Boca Raton: FL CRC Press; 1988. p 149–165. [Google Scholar]
- 137. Jarvis TC, Kirkegaard K. Poliovirus RNA recombination: Mechanistic studies in the absence of selection. EMBO J 1992; 11: 3135–3145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138. Pilipenco EV, Gmyl AP, Agol VI. A model for rearrangements in RNA genomes. Nucl Acids Res 1995; 23: 1870–1875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 139. McIntosh K. Coronaviruses In: Fields BN, Knipe DM, Howley PM, et al., editors. Fields virology. Third edition Philadelphia: Lippincott‐Raven Publishers; 1996. p 1095–1103. [Google Scholar]
- 140. Sawicki DL, Wang T, Sawicki SG. RNA structures engaged in replication and transcription of the A59 strain of mouse hepatitis virus. J Gen Virol 2001; 82: 385–396. [DOI] [PubMed] [Google Scholar]
- 141. Fu K, Baric RS. Evidence for variable rates of recombination in MHV genome. Virology 1992; 189: 88–102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142. Fu K, Baric RS. Map locations of mouse hepatitis virus temperature‐sensitive mutants: Confirmation of variable rates of recombination. J Virol 1994; 68: 7458–7466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143. Banner LR, Keck JG, Lai MM‐C. A clustering of RNA recombination sites adjacent to a hyper‐variable region of the peplomer gene of murine coronavirus. Virology 1990; 175: 548–555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 144. Ahlquist P. Bromovirus RNA replication and transcription. Curr Opin Genet Dev 1992; 2: 71–76. [DOI] [PubMed] [Google Scholar]
- 145. Bujarski JJ, Kaesberg P. Genetic recombination in a multipartite plant virus. Nature 1986; 321: 528–531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 146. Nagy PD, Bujarski JJ. Efficient system of homologous RNA recombination in brome mosaic virus: Sequence and structure requirements and accuracy of crossovers. J Virol 1995; 69: 131–140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 147. Nagy PD, Ogiela C, Bujarski JJ. Mapping sequences active in homologous recombination in brome mosaic virus: Prediction of recombination hot‐spots. Virology 1999; 254: 92–104. [DOI] [PubMed] [Google Scholar]
- 148. Figlerowicz M. Role of RNA structure in heteroduplex‐mediated and site‐specific nonhomologous recombination in brome mosaic virus. Nucl Acids Res 2000; 28: 1714–1723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 149. Bruyere A, Wantroba M, Flasinski S, Dzianott A, Bujarski JJ. Frequent homologous recombination events between molecules of one RNA component in a multipartite RNA virus. J Virol 2000; 74: 4214–4219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 150. Figlerowicz M, Bibiłło A. RNA motifs mediating in vivo site‐specific nonhomologous recombination in (+)RNA virus enforce in vitro nonhomologous crossovers with HIV‐1 reverse transcriptase. RNA 2000; 6: 339–351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 151. Li Y, Ball LA. Non‐homologous RNA recombination during negative strand synthesis of flock house virus RNA. J Virol 1993; 67: 3854–3860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 152. Raju R, Subramaniam SV, Hajjou M. Genesis of Sindbis virus by in vivo recombination of nonreplicative RNA precursors. J Virol 1995; 69: 7391–7401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 153. Tordo N, de Haan P, Goldbach R, Poch O. Evolution of negative‐stranded RNA genomes. Semin Virol 1992; 3: 341–357. [Google Scholar]
- 154. Koonin EV. Evolution of double‐stranded RNA viruses: A case for polyphyletic origin from different groups of positive‐stranded RNA viruses. Semin Virol 1992; 3: 327–340. [Google Scholar]
- 155. Webster RG, Laver WG, Air GM, Schild GC. Molecular mechanisms of variation in influenza viruses. Nature 1982; 296: 115–121. [DOI] [PubMed] [Google Scholar]
- 156. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev 1992; 56: 152–179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 157. Tobita K. Genetic recombination between influenza virus A0/NWS and A2/Hong Kong. Arch Gesamte Virusforschung 1971; 34: 119–130. [DOI] [PubMed] [Google Scholar]
- 158. Tobita K, Kilbourne ED. Genetic recombination for antigenic markers of antigenically different strains of influenza B virus. J Virol 1974; 13: 347–352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 159. Racaniello VR, Palese P. Isolation of influenza C virus recombinants. J Virol 1979; 32: 1006–1014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 160. Galasso RT, Tyeryar TF, Jr. , Cate TR. Clinical studies of influenza vaccines—1976. J Infect Dis 1977; 136(Suppl 1): S341–S346. [DOI] [PubMed] [Google Scholar]
- 161. Garcia‐Sastre A, Palese P. Genetic manipulation of negative‐strand RNA virus genomes. Annu Rev Microbiol 1993; 47: 765–790. [DOI] [PubMed] [Google Scholar]
- 162. Gardner PS, Court SDM, Brocklebank JT, Downham MAPS, Weightman D. Virus cross‐infection in paediatric wards. Br Med J 1973; 2: 571–575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 163. Vezza AC, Cash P, Jahrling P, Eddy G, Bishop DHL. Arenavirus recombination: The formation of recombinants between prototype Pichinde and Pichinde Munhique viruses and evidence that arenavirus S RNA codes for N polypeptide. Virology 1980; 106: 250–260. [DOI] [PubMed] [Google Scholar]
- 164. Fields BN. Temperature‐sensitive mutants of reovirus type 3: Features of genetic recombination. Virology 1971; 46: 142–148. [DOI] [PubMed] [Google Scholar]
- 165. Fields BN, Joklik WK. Isolation and preliminary genetic and biochemical characterization of temperature‐sensitive mutants of reovirus. Virology 1969; 37: 335–342. [DOI] [PubMed] [Google Scholar]
- 166. Lamb RA, Choppen PW. The gene structure and replication of influenza virus. Ann Rev Biochem 1983; 52: 467–506. [DOI] [PubMed] [Google Scholar]
- 167. Lamb RA. Genes and proteins of the influenza viruses In: Krug RM, editor. The influenza viruses. New York: Plenum Press; 1969. p 1–87. [Google Scholar]
- 168. Burnet FN, Lind PE. Recombination of characters between two influenza virus strains. Aust J Sci 1949; 12: 109–110. [Google Scholar]
- 169. Cox NJ, Bender CA. The molecular epidemiology of influenza viruses. Semin Virol 1995; 6: 359–370. [Google Scholar]
- 170. Ghenkina DB, Ghendon YZ. Recombination and complementation between orthomyxoviruses under conditions of abortive infection. Arch Virol 1979; 23: 97–106. [PubMed] [Google Scholar]
- 171. Nakajima K, Sugiura A. Three‐factor cross of influenza virus. Virology 1977; 81: 486–489. [DOI] [PubMed] [Google Scholar]
- 172. Donald HB, Jsaacs A. Counts of influenza virus particles. J Gen Microbiol 1954; 10: 457–462. [DOI] [PubMed] [Google Scholar]
- 173. Hirst GK. Mechanism of influenza recombination. I. Factors influencing recombination rates between temperature‐sensitive mutants of strain WSN and the classification of mutants into complementation–recombination groups. Virology 1973; 55: 81–93. [DOI] [PubMed] [Google Scholar]
- 174. Xu X, Guo Y, Rota PA, Hemphill M, Kendal AP, Cox N. Genetic reassortment of human influenza virus in nature In: Hannoun C, Kendal AP, Klenk HD, Rudenko AA, editors. Options for the control of influenza. Vol. II Amsterdam, The Netherlands: Elsevier Science Publishers; 1993. p 203–207. [Google Scholar]
- 175. McCullers JA, Wang GC, He S, Webster RG. Reassortment and insertion–deletion are strategies for the evolution of influenza B viruses in nature. J Virol 1999; 73: 7343–7348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 176. Peng G, Hongo S, Kimura H, Muraki Y, Sugawara K, Kitame F, Numazaki Y, Suzuki H, Nakamura K. Frequent occurrence of genetic reassortment between influenza C virus strains in nature. J Gen Virol 1996; 77: 1489–1492. [DOI] [PubMed] [Google Scholar]
- 177. Ito T, Couceiro JN, Kelm S, Baum LG, Krauss S, Castrucci MR, Donatelli I, Kida H, Paulson JC, Webster RG, Kawaoka Y. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 1998; 72: 7367–7373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 178. Zhou NN, Shortridge KF, Claas EC, Krauss SL, Webster RG. Rapid evolution of H5N1 influenza viruses in chickens in Hong Kong. J Virol 1999; 73: 3366–3374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 179. Gonzales‐Scarano F, Nathanson N. Bunyaviridae In: Fields BN, Knipe DM, Howley PM, et al., editors. Fields virology. Third edition Philadelphia: Lippincott‐Raven Publishers; 1996. p 1473–1504. [Google Scholar]
- 180. Gentsch J, Bishop DHL. Recombination and complementation between temperature‐sensitive mutants of a buynavirus, snowshoe hare virus. J Virol 1976; 20: 351–354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 181. Gensch J, Robeson G, Bishop DHL. Recombination between snowshoe hare and La Crosse bunyaviruses. J Virol 1979; 31: 707–717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 182. Gensch J, Wynne LR, Clewley JP, Shope RE, Bishop DHL. Formation of recombinants between snowshoe hare and La Crosse bunyaviruses. J Virol 1977; 24: 893–902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 183. Bowen MD, Trappier SG, Sanchez AJ, Meyer RF, Goldsmith CS, Zaki SR, Dunster LM, Peters CJ, Ksiazek TG, Nichol ST. A reassortant bunyavirus isolated from acute hemorrhagic fever cases in Kenya and Somalia. Virology 2001; 291: 185–190. [DOI] [PubMed] [Google Scholar]
- 184. Southern PJ. Arenaviridae: The viruses and their replication In: Fields BN, Knipe DM, Howley PM, et al., editors. Fields virology. Third edition Philadelphia: Lippincott‐Raven Publishers; 1996. p 1505–1520. [Google Scholar]
- 185. Riviere Y, Oldstone MBA. Genetic reassortants of lymphocytic choriomeningitis virus: Unexpected disease and mechanism of pathogenesis. J Virol 1986; 59: 363–368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 186. Fields BN. Reoviridae In: Fields BN, Knipe DM, Howley PM, et al., editors. Fields virology. Third edition Philadelphia: Lippincott‐Raven Publishers; 1996. p 1553–1555. [Google Scholar]
- 187. Gorman BM. On the evolution of orbiviruses. Intervirology 1983; 20: 169–180. [DOI] [PubMed] [Google Scholar]
- 188. Desselberger U. Genome rearrangements of rotaviruses. Adv Virus Res 1996; 46: 69–95. [DOI] [PubMed] [Google Scholar]
- 189. Gouvea V, Brantly M. Is rotavirus a population of reassortants? Trends Microbiol 1995; 3: 159–162. [DOI] [PubMed] [Google Scholar]
- 190. Wenske EA, Chanock SJ, Krata L, Fields BN. Genetic reassortment of mammalian reoviruses in mice. J Virol 1985; 56: 613–616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 191. Watanabe M, Nakagomi T, Koshimura Y, Nakagomi O. Direct evidence for genome segment reassortment between concurrently circulating human rotavirus strains. Arch Virol 2001; 146: 557–570. [DOI] [PubMed] [Google Scholar]
- 192. Unicomb LE, Podder G, Gentsch JR, Woods PA, Hasan KZ, Faruque AS, Albert MJ, Glass RI. Evidence of high frequency genomic reassortment of group A rotavirus strains in Bangladesh: Emergence of type G9 in 1995. J Clin Microbiol 1999; 37: 1885–1891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 193. Samal SK, Livingstone CW, McConnell S, Ramig RF. Analysis of mixed infection of sheep with bluetongue virus serotypes 10 and 17: Evidence for genetic reassortment in the vertebrate host. J Virol 1987; 61: 1086–1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 194. Sugiyama K, Bishop DHL, Roy P. Analysis of the genomes of bluetongue viruses recovered in the United States. I. Oligonucleotide fingerprint studies that indicate the existence of naturally occurring reassortment BTV isolates. Virology 1981; 114: 210–217. [DOI] [PubMed] [Google Scholar]
- 195. Iturriza‐Gomara M, Isherwood B, Desselberger U, Gray J. Reassortment in vivo: Driving force for diversity of human rotavirus strains isolated in the United Kingdom between 1995 and 1999. J Virol 2001; 75: 3696–3705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 196. Cross RK, Fields BN. Use of aberrant polypeptide as a marker in three‐factor crosses: Further evidence for independent reassortment as a mechanism of recombination between temperature‐sensitive mutants of reovirus type 3. Virology 1979; 74: 345–362. [DOI] [PubMed] [Google Scholar]
- 197. Krishnan T, Naik TN, Desselberger U. Molecular epidemiology of human rotaviruses: Reassortment in vivo as a mechanism for strain diversity? J Infect 1996; 32: 169–170. [DOI] [PubMed] [Google Scholar]
- 198. Ramig RF. Genetics of the rotaviruses. Annu Rev Microbiol 1997; 51: 225–255. [DOI] [PubMed] [Google Scholar]
- 199. Fields BN. Temperature‐sensitive mutants of reovirus type 3: Features of genetic recombination. Virology 1971; 46: 142–148. [DOI] [PubMed] [Google Scholar]
- 200. Fenner F. Myxomatosis in Australian wild rabbits—Evolutionary changes in an infectious disease. Harvey Lect 1957; 53: 25–55. [PubMed] [Google Scholar]
- 201. McNeill WH. Plagues and peoples: Natural history of infectious diseases. Garden City, NY: Anchor Press, Doubleday; 1976. [Google Scholar]
- 202. Piot P, Bartos M, Ghys PD, Walker N, Schwartlander B. The global impact of HIV/AIDS. Nature 2001; 410: 968–973. [DOI] [PubMed] [Google Scholar]
- 203. Lavanchy D, McMahon B. Worldwide prevalence and prevention of hepatitis C In: Liang TJ, Hoofnagle JH, editors. Biomedical research reports. Hepatitis C. San Diego: Academic Press; 2000. p 185–201. [Google Scholar]
- 204. Desrosiers RC. HIV‐1 origins: Finger on the missing link. Nature 1990; 345: 288–289. [DOI] [PubMed] [Google Scholar]
- 205. Desrosiers RC, Daniel MD, Li Y. HIV‐related lentiviruses of nonhuman primates. AIDS Res Hum Retroviruses 1989; 5: 465–473. [DOI] [PubMed] [Google Scholar]
- 206. Sharp PM, Bailes E, Chaudhuri RR, Rodenburg CM, Santiago MO, Hahn BH. The origins of acquired immune deficiency syndrome viruses: Where and when? Philosophical transactions of the Royal Society of London—Series B. Biol Sci 2001; 356: 867–876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 207. Schneider J, Hunsmann G. Simian lentiviruses—The SIV group. AIDS 1988; 2: 1–9. [DOI] [PubMed] [Google Scholar]
- 208. Farci P. Hepatitis C virus. The importance of viral heterogeneity. Clin Liver Dis 2001; 5: 895–916. [DOI] [PubMed] [Google Scholar]
- 209. Farci P, Shimoda A, Coiana A, Diaz G, Peddis G, Melpolder JC, Strazzera A, Chien DY, Munoz SJ, Balestrieri A, Purcell RH, Alter HJ. The outcome of acute hepatitis C predicted by the evolution of the viral quasispecies. Science 2000; 288: 339–344. [DOI] [PubMed] [Google Scholar]
- 210. Farci P, Strazzera R, Alter HJ, Farci S, Degioannis D, Coiana A, Peddis G, Usai F, Serra G, Chessa L, Diaz G, Balestrieri A, Purcell RH. Early changes in hepatitis C viral quasispecies during interferon therapy predict the therapeutic outcome. Proc Natl Acad Sci USA 2002; 99: 3081–3086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 211. Choo QL, Kuo G, Weiner AJ. Isolation of cDNA derived from blood‐borne non‐A, non‐B viral hepatitis genome. Science 1989; 244: 359–362. [DOI] [PubMed] [Google Scholar]
- 212. Yoo BJ, Spaete RR, Geballe AP, Selby M, Houghton M, Han JH. 5′ End‐dependent translation initiation of hepatitis C viral RNA and the presence of putative positive and negative control elements within the 5′ untranslated region. Virology 1992; 191: 889–899. [DOI] [PubMed] [Google Scholar]
- 213. Miller RH, Purcell RH. Hepatitis C virus shares amino acid sequence similarity with pestivirus and flaviviruses as well as members of two plant virus supergroups. Proc Natl Acad Sci USA 1990; 87: 2057–2061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 214. Bendinelli M, Vatteroni ML, Maggi F, Pistello M. Hepatitis C virus. Biology, pathogenesis, epidemiology, clinical description, and diagnosis In: Specter S, editor. Viral hepatitis—Diagnosis, therapy, and prevention. Totowa, NJ: Humana Press; 1999. p 65–127. [Google Scholar]