Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2009 Sep 28;76(5):448–455. doi: 10.1002/msj.20140

The Significant but Understudied Impact of Pathogen Transmission from Humans to Animals

Jonathan H Epstein 1,, Joan T Price 2
PMCID: PMC7168516  PMID: 19787650

Abstract

Zooanthroponotic pathogens, which are transmitted from humans to nonhuman animals, are an understudied aspect of global health, despite their potential to cause significant disease burden in wild and domestic animal populations and affect global economies. Some key human‐borne pathogens that have been shown to infect animals and cause morbidity and mortality include measles virus (paramyxoviruses), influenza A virus (orthomyxoviruses), herpes simplex 1 virus (herpesviruses), protozoal and helminthic parasites, and bacteria such as methicillin‐resistant Staphylococcus aureus and Mycobacterium tuberculosis. However, zooanthroponotic pathogens are most commonly reported in captive animals or domestic livestock with close human contact; there, the potential for economic loss and human reinfection is most apparent. There is also the potential for infection in wild animal populations, which may threaten endangered species and decrease biodiversity. The emergence and reemergence of human‐borne pathogens in wildlife may also have negative consequences for human health if these pathogens cycle back into humans. Many of the anthropogenic drivers of zoonotic disease emergence also facilitate zooanthroponotic transmission. Increasing research to better understand the occurrence of and the potential for bidirectional pathogen transmission between humans and animals is essential for improving global health. Mt Sinai J Med 76:448–455, 2009. © 2009 Mount Sinai School of Medicine

Keywords: conservation; conservation medicine; H1N1 influenza A; herpesvirus; methicillin‐resistant Staphylococcus aureus; paramyxovirus; primates; tuberculosis; zooanthroponoses, zoonoses

REFERENCES

  • 1. Quammen D. Little is big, many is one: zoonoses in the twenty‐first century In: Eva Fearn. and Ward Woods. Editors eds. State of the Wild: A Global Portrait of Wildlife, Wildlands, and Oceans 2008–2009. Washington, DC: Island Press; 2008. [Google Scholar]
  • 2. Daszak P, Cunningham AA, Hyatt AD. Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 2000; 287: 443–449. [DOI] [PubMed] [Google Scholar]
  • 3. Jones KE, Patel NG, Levy MA, et al. Global trends in emerging infectious diseases. Nature 2008; 451: 990–993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Hubalek Z. Emerging human infectious diseases: anthroponoses, zoonoses, and sapronoses. Emerg Infect Dis 2003; 9: 403–404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Wolfe ND, Daszak P, Kilpatrick AM, Burke DS. Bushmeat hunting, deforestation and prediction of zoonotic emergence. Emerg Infect Dis 2005; 11: 1822–1827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Goldberg TL, Gillespie TR, Rwego IB, et al. Forest fragmentation and bacterial transmission among nonhuman primates, humans, and livestock, Uganda. Emerg Infect Dis 2008; 14: 1375–1382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Goldberg TL, Gillespie TR, Rwego IB, et al. Patterns of gastrointestinal bacterial exchange between chimpanzees and humans involved in research and tourism in western Uganda. Biol Conserv 2007; 135: 511–517. [Google Scholar]
  • 8. Kaur T, Singh J, Tong SX, et al. Descriptive epidemiology of fatal respiratory outbreaks and detection of a human‐related metapneumovirus in wild chimpanzees (Pan troglodytes) at Mahale Mountains National Park, western Tanzania. Am J Primatol 2008; 70: 755–765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Wallis J. Primate conservation and human to nonhuman primate disease transmission. Am J Phys Anthropol 2003; suppl. 36: 219–219.12772210 [Google Scholar]
  • 10. Tzipori S. Cryptosporidiosis in animals and humans. Microbiol Rev 1983; 47: 84–96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Lobo ML, Xiao L, Antunes F, Matos O. Occurrence of Cryptosporidium and Giardia genotypes and subtypes in raw and treated water in Portugal. Lett Appl Microbiol 2009; 48: 732–737. [DOI] [PubMed] [Google Scholar]
  • 12. Di Giovanni GD, Betancourt WQ, Hernandez J, et al. Investigation of potential zooanthroponotic transmission of cryptosporidiosis and giardiasis through agricultural use of reclaimed wastewater. Int J Environ Health Res 2006; 16: 405–418. [DOI] [PubMed] [Google Scholar]
  • 13. Heymann D, ed. Control of Communicable Diseases Manual. 18th ed. Washington, DC: American Public Health Association; 2004. [Google Scholar]
  • 14. Kondgen S, Kuhl H, N'Goran PK, et al. Pandemic human viruses cause decline of endangered great apes. Curr Biol 2008; 18: 260–264. [DOI] [PubMed] [Google Scholar]
  • 15. Woodford MH, Butynski TM, Karesh WB. Habituating the great apes: the disease risks. Oryx 2002; 36: 153–160. [Google Scholar]
  • 16. Zar HJ. Pneumonia in HIV‐infected and HIV‐uninfected children in developing countries: epidemiology, clinical features, and management. Curr Opin Pulm Med 2004; 10: 176–182. [DOI] [PubMed] [Google Scholar]
  • 17. Weber MW, Mulholland EK, Greenwood BM. Respiratory syncytial virus infection in tropical and developing countries. Trop Med Int Health 1998; 3: 268–280. [DOI] [PubMed] [Google Scholar]
  • 18. Blake FG, Trask JD Jr. Studies on measles: II. Symptomatology and pathology in monkeys experimentally infected. J Exp Med 1921; 33: 413–422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Albrecht P, Lorenz D, Klutch MJ, et al. Fatal measles infection in marmosets pathogenesis and prophylaxis. Infect Immun 1980; 27: 969–978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Choi YK, Simon MA, Kim DY, et al. Fatal measles virus infection in Japanese macaques (Macaca fuscata). Vet Pathol 1999; 36: 594–600. [DOI] [PubMed] [Google Scholar]
  • 21. Willy ME, Woodward RA, Thornton VB, et al. Management of a measles outbreak among Old World nonhuman primates. Lab Anim Sci 1999; 49: 42–48. [PubMed] [Google Scholar]
  • 22. Blasier MW, Travis DA, Barbiers R. Retrospective evaluation of measles antibody titers in vaccinated captive gorillas (Gorilla gorilla gorilla). J Zoo Wildl Med 2005; 36: 198–203. [DOI] [PubMed] [Google Scholar]
  • 23. Webster RG, Bean WJ, Gorman OT, et al. Evolution and ecology of influenza‐A viruses. Microbiol Rev 1992; 56: 152–179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Ito T, Couceiro J, Kelm S, et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 1998; 72: 7367–7373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Shope RE. The incidence of neutralizing antibodies for swine influenza virus in the sera of human beings of different ages. J Exp Med 1936; 63: 669–684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Dunham EJ, Dugan VG, Kaser EK, et al. Different evolutionary trajectories of European avian‐like and classical swine H1N1 influenza A viruses. J Virol 2009; 83: 5485–5494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Neumann G, Noda T, Kawaoka Y. Emergence and pandemic potential of swine‐origin H1N1 influenza virus. Nature 2009; 459: 931–939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Olsen CW. The emergence of novel swine influenza viruses in North America. Virus Res 2002; 85: 199–210. [DOI] [PubMed] [Google Scholar]
  • 29. Dawood FS, Jain S, Finelli L, et al. Emergence of a novel swine‐origin influenza A (H1N1) virus in humans. N Engl J Med 2009; 360: 2605–2615. [DOI] [PubMed] [Google Scholar]
  • 30.Mexico estimates flu cost economy $ 2.2 billion. Wall Street Journal Available at: http://online.wsj.com/article/sb124152252457387033.html. Accessed June 2009.
  • 31. Bryson JH. Economic effects of swine flu: Mexico and beyond. Available at: http://www.wachovia.com/economics. Accessed 30 June 2009.
  • 32.Global development finance report. Available at: http://siteresources.worldbank.org/extavianflu/res-ources/gdf2009_h1n1_impact.pdf. Accessed June 2009.
  • 33. Cima G. H1N1 strain in humans causes concerns over animal impacts. J Am Vet Med Assoc 2009; 234: 1358–1360. [DOI] [PubMed] [Google Scholar]
  • 34. World Organisation for Animal Health . A/H1N1 influenza, Canada (immediate notification). Available at: http://www.oie.int/wahis/public.php?page=weekly_report_index&admin=0. Accessed June 2009.
  • 35. Heldstab A, Ruedi D, Sonnabend W, Deinhardt F. Spontaneous generalized Herpesvirus hominis infection of a lowland gorilla (Gorilla gorilla gorilla). J Med Primatol 1981; 10: 129–135. [DOI] [PubMed] [Google Scholar]
  • 36. Loomis MR, O'Neill T, Bush M, Montali RJ. Fatal herpesvirus infection in patas monkeys and a black and white colobus monkey. J Am Vet Med Assoc 1981; 179: 1236–1239. [PubMed] [Google Scholar]
  • 37. Matz‐Rensing K, Jentsch KD, Rensing S, et al. Fatal herpes simplex infection in a group of common marmosets (Callithrix jacchus). Vet Pathol 2003; 40: 405–411. [DOI] [PubMed] [Google Scholar]
  • 38. Ramsay E, Stair EL, Castro AE, Marks MI. Fatal Herpesvirus hominis encephalitis in a white‐handed gibbon. J Am Vet Med Assoc 1982; 181: 1429–1430. [PubMed] [Google Scholar]
  • 39. McClure HM, Keeling ME. Viral diseases noted in the Yerkes Primate Center colony. Lab Anim Sci 1971; 21: 1002–1010. [PubMed] [Google Scholar]
  • 40. Schrenzel MD, Osborn KG, Shima A, et al. Naturally occurring fatal herpes simplex virus 1 infection in a family of white‐faced saki monkeys (Pithecia pithecia pithecia). J Med Primatol 2003; 32: 7–14. [DOI] [PubMed] [Google Scholar]
  • 41. Weigler BJ. Biology of B virus in macaque and human hosts: a review. Clin Infect Dis 1992; 14: 555–567. [DOI] [PubMed] [Google Scholar]
  • 42. Oliveira DC, Tomasz A, de Lencastre H. Secrets of success of a human pathogen: molecular evolution of pandemic clones of methicillin‐resistant Staphylococcus aureus . Lancet Infect Dis 2002; 2: 180–189. [DOI] [PubMed] [Google Scholar]
  • 43. Zetola N, Francis JS, Nuermberger EL, Bishai WR. Community‐acquired methicillin‐resistant Staphylococcus aureus: an emerging threat. Lancet Infect Dis 2005; 5: 275–286. [DOI] [PubMed] [Google Scholar]
  • 44. Hidron AI, Low CE, Honig EG, Blumberg HM. Emergence of community‐acquired methicillin‐resistant Staphylococcus aureus strain USA300 as a cause of necrotising community‐onset pneumonia. Lancet Infect Dis 2009; 9: 384–392. [DOI] [PubMed] [Google Scholar]
  • 45. Morgan M. Methicillin‐resistant Staphylococcus aureus and animals: zoonosis or humanosis? J Antimicrob Chemother 2008; 62: 1181–1187. [DOI] [PubMed] [Google Scholar]
  • 46. Crossley K. Long‐term care facilities as sources of antibiotic‐resistant nosocomial pathogens. Curr Opin Infect Dis 2001; 14: 455–459. [DOI] [PubMed] [Google Scholar]
  • 47. Lefebvre SL, Reid‐Smith RJ, Waltner‐Toews D, Weese JS. Incidence of acquisition of methicillin‐resistant Staphylococcus aureus, Clostridium difficile, and other health‐care‐associated pathogens by dogs that participate in animal‐assisted interventions. J Am Vet Med Assoc 2009; 234: 1404–1417. [DOI] [PubMed] [Google Scholar]
  • 48. Michalak K, Austin C, Diesel S, et al. Mycobacterium tuberculosis infection as a zoonotic disease: transmission between humans and elephants. Emerg Infect Dis 1998; 4: 283–287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Montali RJ, Mikota SK, Cheng LI. Mycobacterium tuberculosis in zoo and wildlife species. Rev Sci Tech 2001; 20: 291–303. [DOI] [PubMed] [Google Scholar]
  • 50. Moreland AF. Tuberculosis in New World primates. Lab Anim Care 1970; 20: 262–264. [PubMed] [Google Scholar]
  • 51. Ackerman LJ, Benbrook SC, Walton BC. Mycobacterium tuberculosis infection in a parrot (Amazona farinosa). Am Rev Respir Dis 1974; 109: 388–390. [DOI] [PubMed] [Google Scholar]
  • 52. Washko RM, Hoefer H, Kiehn TE, et al. Mycobacterium tuberculosis infection in a green‐winged macaw (Ara chloroptera): report with public health implications. J Clin Microbiol 1998; 36: 1101–1102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Michel AL, Huchzermeyer HF. The zoonotic importance of Mycobacterium tuberculosis: transmission from human to monkey. J S Afr Vet Assoc 1998; 69: 64–65. [DOI] [PubMed] [Google Scholar]
  • 54. Ocepek M, Pate M, Zolnir‐Dovc M, Poljak M. Transmission of Mycobacterium tuberculosis from human to cattle. J Clin Microbiol 2005; 43: 3555–3557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Oh P, Granich R, Scott J, et al. Human exposure following Mycobacterium tuberculosis infection of multiple animal species in a Metropolitan Zoo. Emerg Infect Dis 2002; 8: 1290–1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Taylor LH, Latham SM, Woolhouse ME. Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 2001; 356: 983–989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Alexander DJ, Brown IH. Recent zoonoses caused by influenza A viruses. Rev Sci Tech 2000; 19: 197–225. [DOI] [PubMed] [Google Scholar]
  • 58. Daszak P, Cunningham AA, Hyatt AD. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop 2001; 78: 103–116. [DOI] [PubMed] [Google Scholar]
  • 59. Daszak P, Tabor GM, Kilpatrick AM, et al. Conservation medicine and a new agenda for emerging diseases In: Bokma BH, Blouin E, Bechara G.H. eds. Impact of Ecological Changes on Tropical Animal Health and Disease Control. New York, NY: New York Academy of Sciences; 2004; 1–11. [DOI] [PubMed] [Google Scholar]
  • 60. Bio‐Era . Available at: http://www.bio-era.net/activities/thinking.html. Accessed 30 June 2009.

Articles from The Mount Sinai Journal of Medicine, New York are provided here courtesy of Wiley

RESOURCES