Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2006 Oct 3;27(5):631–648. doi: 10.1002/med.20072

Potential opportunity in the development of new therapeutic agents based on endogenous and exogenous inhibitors of the proprotein convertases

Yannick Bontemps 1,2, Nathalie Scamuffa 1,2, Fabien Calvo 1,2, Abdel‐Majid Khatib 1,2,
PMCID: PMC7168524  PMID: 17019676

Abstract

The proprotein convertases (PCs) are responsible for the endoproteolytic processing of various protein precursors (e.g., growth factors, receptors, adhesion molecules, and matrix metalloproteinases) implicated in several diseases such as obesity, diabetes, atherosclerosis, cancer, and Alzheimer disease. The potential clinical and pharmacological role of the PCs has fostered the development of various PC‐inhibitors. In this review we summarized the recent findings on PCs inhibitors, their mode of actions and potential use in the therapy of various diseases. © 2006 Wiley Periodicals, Inc. Med Res Rev, 27, No. 5, 631–648, 2007

Keywords: protein maturation, convertases, drug development

REFERENCES

  • 1. Seidah NG, Chretien M. Proprotein and prohormone convertases: A family of subtilases generating diverse bioactive polypeptides. Brain Res 1999; 848: 45–62. [DOI] [PubMed] [Google Scholar]
  • 2. Khatib AM, Siegfried G, Chretien M, Metrakos P, Seidah NG. Proprotein convertases in tumor progression and malignancy: Novel targets in cancer therapy. Am J Pathol 2002; 160: 1921–1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Taylor NA, Van De Ven WJ, Creemers JW. Curbing activation: Proprotein convertases in homeostasis and pathology. FASEB J 2003; 17: 1215–1227. [DOI] [PubMed] [Google Scholar]
  • 4. Steiner DF. The proprotein convertases. Curr Opin Chem Biol 1998; 2: 31–39. [DOI] [PubMed] [Google Scholar]
  • 5. Zhou A, Webb G, Zhu X, Steiner DF. Proteolytic processing in the secretory pathway. J Biol Chem 1999; 274: 20745–20748. [DOI] [PubMed] [Google Scholar]
  • 6. Thomas G. Furin at the cutting edge: From protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol 2002; 3: 753–766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Seidah NG, Mowla SJ, Hamelin J, Mamarbachi AM, Benjannet S, Touré BB, Basak A, Munzer JS, Marcinkiewicz J, Zhong M, Barale J‐C, Lazure C, Murphy RA, Chrétien M, Marcinkiewicz M. Mammalian subtilisin/kexin isozyme SKI‐1: A widely expressed proprotein convertase with a unique cleavage specificity and cellular localization. Proc Natl Acad Sci USA 1999; 96: 1321–1326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Sakai J, Rawson RB, Espenshade PJ, Cheng D, Seegmiller AC, Goldstein JL, Brown MS. Molecular identification of the sterol‐regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol Cell 1998; 2: 505–514. [DOI] [PubMed] [Google Scholar]
  • 9. Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB, Stifani S, Basak A, Prat A, Chretien M. The secretory proprotein convertase neural apoptosis‐regulated convertase 1 (NARC‐1): Liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA 2003; 100: 928–933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Naureckiene S, Ma L, Sreekumar K, Purandare U, Lo CF, Huang Y, Chiang LW, Grenier JM, Ozenberger BA, Jacobsen JS, Kennedy JD, DiStefano PS, Wood A, Bingham B. Functional characterization of Narc 1, a novel proteinase related to proteinase K. Arch Biochem Biophys 2003; 420: 55–67. [DOI] [PubMed] [Google Scholar]
  • 11. Creemers JW, Ines Dominguez D, Plets E, Serneels L, Taylor NA, Multhaup G, Craessaerts K, Annaert W, De Strooper B. Processing of beta‐secretase by furin and other members of the proprotein convertase family. J Biol Chem 2001; 276: 4211–4217. [DOI] [PubMed] [Google Scholar]
  • 12. Bennett BD, Denis P, Haniu M, Teplow DB, Kahn S, Louis JC, Citron M, Vassar R. A furin‐like convertase mediates propeptide cleavage of BACE, the Alzheimer's beta‐secretase. J Biol Chem 2000; 275: 37712–37717 Erratum in: [DOI] [PubMed] [Google Scholar]; J Biol Chem 2001; 276: 15561. [Google Scholar]
  • 13. Khatib AM, Bassi D, Siegfried G, Klein‐Szanto AJ, Ouafik L. Endo/exo‐proteolysis in neoplastic progression and metastasis. J Mol Med 2005; 83: 856–864. [DOI] [PubMed] [Google Scholar]
  • 14. Muller EJ, Caldelari R, Posthaus H. Role of subtilisin‐like convertases in cadherin processing or the conundrum to stall cadherin function by convertase inhibitors in cancer therapy. J Mol Histol 2004; 35: 263–275. [DOI] [PubMed] [Google Scholar]
  • 15. Siegfried G, Khatib AM, Benjannet S, Chretien M, Seidah NG. The proteolytic processing of pro‐platelet‐derived growth factor‐A at RRKR(86) by members of the proprotein convertase family is functionally correlated to platelet‐derived growth factor‐A‐induced functions and tumorigenicity. Cancer Res 2003; 63: 1458–1463. [PubMed] [Google Scholar]
  • 16. Siegfried G, Basak A, Cromlish JA, Benjannet S, Marcinkiewicz J, Chrétien M, Seidah NG, Khatib AM. The secretory proprotein convertases furin, PC5, and PC7 activate VEGF‐C to induce tumorigenesis. J Clin Invest 2003; 111: 1723–1732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. McKee ML, FitzGerald DJ. Reduction of furin‐nicked Pseudomonas exotoxin A: An unfolding story. Biochemistry 1999; 38: 16507–16513. [DOI] [PubMed] [Google Scholar]
  • 18. Moehring JM, Inocencio NM, Robertson BJ, Moehring TJ. Expression of mouse furin in a Chinese hamster cell resistant to Pseudomonas exotoxin A and viruses complements the genetic lesion. J Biol Chem 1993; 268: 2590–2594. [PubMed] [Google Scholar]
  • 19. Gordon VM, Klimpel KR, Arora N, Henderson MA, Leppla SH. Proteolytic activation of bacterial toxins by eukaryotic cells is performed by furin and by additional cellular proteases. Infect Immun 1995; 63: 82–87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Fukui A, Horiguchi Y. Bordetella dermonecrotic toxin exerting toxicity through activation of the small GTPase Rho. J Biochem (Tokyo) 2004; 136: 415–419. [DOI] [PubMed] [Google Scholar]
  • 21. Beauregard KE, Collier RJ, Swanson JA. Proteolytic activation of receptor‐bound anthrax protective antigen on macrophages promotes its internalization. Cell Microbiol 2000; 2: 251–258. [DOI] [PubMed] [Google Scholar]
  • 22. Gordon VM, Rehemtulla A, Leppla SH. A role for PACE4 in the proteolytic activation of anthrax toxin protective antigen. Infect Immun 1997; 65: 3370–3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Abrami L, Fivaz M, Decroly E, Seidah NG, Jean F, Thomas G, Leppla SH, Buckley JT, Van der Goot FG. The pore‐forming toxin proaerolysin is activated by furin. J Biol Chem 1998; 273: 32656–32661. [DOI] [PubMed] [Google Scholar]
  • 24. Decroly E, Wouters S, Di Bello C, Lazure C, Ruysschaert JM, Seidah NG. Identification of the paired basic convertases implicated in HIV gp160 processing based on in vitro assays and expression in CD4(+) cell lines. J Biol Chem 1996; 271: 30442–30450 Erratum in: [DOI] [PubMed] [Google Scholar]; J Biol Chem 1997; 272: 8836. [Google Scholar]
  • 25. Moulard M, Hallenberger S, Garten W, Klenk HD. Processing and routage of HIV glycoproteins by furin to the cell surface. Virus Res 1999; 60: 55–65. [DOI] [PubMed] [Google Scholar]
  • 26. Basak A, Zhong M, Munzer JS, Chretien M, Seidah NG. Implication of the proprotein convertases furin, PC5 and PC7 in the cleavage of surface glycoproteins of Hong Kong, Ebola and respiratory syncytial viruses: A comparative analysis with fluorogenic peptides. Biochem J 2001; 353: 537–545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Bergeron E, Vincent MJ, Wickham L, Hamelin J, Basak A, Nichol ST, Chretien M, Seidah NG. Implication of proprotein convertases in the processing and spread of severe acute respiratory syndrome coronavirus. Biochem Biophys Res Commun 2005; 326: 554–563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Lenz O, ter Meulen J, Klenk H‐D, Seidah NG, Garten W. The Lassa virus glycoprotein precursor GP‐C is proteolytically processed by subtilase SKI‐1/S1P. Proc Natl Acad Sci USA 2001; 98: 12701–12705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Basak A, Chretien M, Seidah NG. A rapid fluorometric assay for the proteolytic activity of SKI‐1/S1P based on the surface glycoprotein of the hemorrhagic fever Lassa virus. FEBS Lett 2002; 514: 333–339. [DOI] [PubMed] [Google Scholar]
  • 30. Vincent MJ, Sanchez AJ, Erickson BR, Basak A, Chretien M, Seidah NG, Nichol ST. Crimean‐Congo hemorrhagic fever virus glycoprotein proteolytic processing by subtilase SKI‐1. J Virol 2003; 77: 8640–8649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Beyer WR, Pöpplau D, Garten W, von Laer D, Lenz O. Endoproteolytic processing of the lymphocytic choriomeningitis virus glycoprotein by the subtilase SKI‐1/S1P. J Virol 2003; 77: 2866–2872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Pullikotil P, Vincent M, Nichol ST, Seidah NG. Development of protein‐based inhibitors of the proprotein of convertase SKI‐1/S1P: Processing of SREBP‐2, ATF6, and a viral glycoprotein. J Biol Chem 2004; 279: 17338–17347. [DOI] [PubMed] [Google Scholar]
  • 33. Boudreault A, Gauthier D, Lazure C. Proprotein convertase PC1/3‐related peptides are potent slow tight‐binding inhibitors of murine PC1/3 and Hfurin. J Biol Chem 1998; 273: 31574–31580. [DOI] [PubMed] [Google Scholar]
  • 34. Zhong M, Munzer JS, Basak A, Benjannet S, Mowla SJ, Decroly E, Chretien M, Seidah NG. The prosegments of furin and PC7 as potent inhibitors of proprotein convertases In vitro and ex vivo assessment of their efficacy and selectivity. J Biol Chem 1999; 274: 33913–33920. [DOI] [PubMed] [Google Scholar]
  • 35. Shinde U, Li Y, Inouye M. Propeptide mediated protein folding: Intramolecular chaperones In: Shinde U, Inouye M, editors. Intramolecular chaperones and protein folding. Austin, TX: RG Landes Co; 1995. p 1–34 [Google Scholar]; And Seidah NG. The mammalian family of subtilisin/kexin‐like pro‐protein convertases In: Shinde U, Inouye M, editors. Intramolecular chaperones and protein folding. Austin, TX: RG Landes Co; 1995. p 181–203. [Google Scholar]
  • 36. Anderson ED, Molloy SS, Jean F, Fei H, Shimamura S, Thomas G. The ordered and compartment‐specfific autoproteolytic removal of the furin intramolecular chaperone is required for enzyme activation. J Biol Chem 2002; 277: 12879–12890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Siegfried G, Basak A, Prichett‐Pejic W, Scamuffa N, Ma L, Benjannet S, Veinot JP, Calvo F, Seidah NG, Khatib AM. Regulation of the stepwise proteolytic cleavage and secretion of PDGF‐B by the proprotein convertases. Oncogene 2005; 24: 6925–6935. [DOI] [PubMed] [Google Scholar]
  • 38. Lopez de Cicco R, Bassi DE, Zucker S, Seidah NG, Klein‐Szanto AJ. Human carcinoma cell growth and invasiveness is impaired by the propeptide of the ubiquitous proprotein convertase furin. Cancer Res 2005; 65: 4162–4171. [DOI] [PubMed] [Google Scholar]
  • 39. Braks JA, Martens GJ. 7B2 is a neuroendocrine chaperone that transiently interacts with prohormone convertase PC2 in the secretory pathway. Cell 1994; 78: 263–273. [DOI] [PubMed] [Google Scholar]
  • 40. Zhu X, Lindberg I. 7B2 facilitates the maturation of proPC2 in neuroendocrine cells and is required for the expression of enzymatic activity. J Cell Biol 1995; 129: 1641–1650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Martens GJ, Braks JA, Eib DW, Zhou Y, Lindberg I. The neuroendocrine polypeptide 7B2 is an endogenous inhibitor of prohormone convertase PC2. Proc Natl Acad Sci USA 1994; 91: 5784–5787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Braks JA, Van Horssen AM, Martens GJ. Dissociation of the complex between the neuroendocrine chaperone 7B2 and prohormone convertase PC2 is not associated with proPC2 maturation. Eur J Biochem 1996; 238: 505–510. [DOI] [PubMed] [Google Scholar]
  • 43. Cameron A, Fortenberry Y, Lindberg I. The SAAS granin exhibits structural and functional homology to 7B2 and contains a highly potent hexapeptide inhibitor of PC1. FEBS Lett 2000; 473: 135–138. [DOI] [PubMed] [Google Scholar]
  • 44. Apletalina E, Appel J, Lamango NS, Houghten RA, Lindberg I. Identification of inhibitors of prohormone convertases 1 and 2 using a peptide combinatorial library. J Biol Chem 1998; 273: 26589–26595. [DOI] [PubMed] [Google Scholar]
  • 45. Fricker LD, McKinzie AA, Sun J, Curran E, Qian Y, Yan L, Patterson SD, Courchesne PL, Richards B, Levin N, Mzhavia N, Devi LA, Douglass J. Identification and characterization of proSAAS, a granin‐like neuroendocrine peptide precursor that inhibits prohormone processing. J Neurosci 2000; 20: 639–648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Qian Y, Devi LA, Mzhavia N, Munzer S, Seidah NG, Fricker LD. The C‐terminal region of proSAAS is a potent inhibitor of prohormone convertase 1. J Biol Chem 2000; 275: 23596–23601. [DOI] [PubMed] [Google Scholar]
  • 47. Salier JP, Rouet P, Raguenez G, Daveau M. The inter‐alpha‐inhibitor family: From structure to regulation. Biochem J 1996; 315: 1–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Fries E, Blom AM. Bikunin—Not just a plasma proteinase inhibitor. Int J Biochem Cell Biol 2000; 32: 125–137. [DOI] [PubMed] [Google Scholar]
  • 49. Lim YP, Bendelja K, Opal SM, Siryaporn E, Hixson DC, Palardy JE. Correlation between mortality and the levels of inter‐alpha inhibitors in the plasma of patients with severe sepsis. J Infect Dis 2003; 188: 919–926. [DOI] [PubMed] [Google Scholar]
  • 50. Xu Y, Carr PD, Guss JM, Ollis DL. The crystal structure of bikunin from the inter‐alpha‐inhibitor complex: A serine protease inhibitor with two Kunitz domains. J Mol Biol 1998; 276: 955–966. [DOI] [PubMed] [Google Scholar]
  • 51. Opal SM, Artenstein AW, Cristofaro PA, Jhung JW, Palardy JE, Parejo NA, Lim YP. Inter‐alpha‐inhibitor proteins are endogenous furin inhibitors and provide protection against experimental anthrax intoxication. Infect Immun 2005; 73: 5101–5105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Dahlen JR, Foster DC, Kisiel W. Expression, purification, and inhibitory properties of human proteinase inhibitor. Biochemistry 1997; 36: 14874–14882. [DOI] [PubMed] [Google Scholar]
  • 53. Dahlen JR, Jean F, Thomas G, Foster DC, Kisiel W. Inhibition of soluble recombinant furin by human proteinase inhibitor 8. J Biol Chem 1998; 273: 1851–1854. [DOI] [PubMed] [Google Scholar]
  • 54. Angliker H, Shaw E, Stone SR. Synthesis of oligopeptide chloromethanes to investigate extended binding regions of proteinases: Application to the interaction of fibrinogen with thrombin. Biochem J 1993; 292: 261–266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Hallenberger S, Bosch V, Angliker H, Shaw E, Klenk HD, Garten W. Inhibition of furin‐mediated cleavage activation of HIV‐1 glycoprotein gp160. Nature 1992; 360: 358–361. [DOI] [PubMed] [Google Scholar]
  • 56. Deb S, Zhang JW, Gottschall PE. Activated isoforms of MMP‐2 are induced in U87 human glioma cells in response to beta‐amyloid peptide. J Neurosci Res 1999; 55: 44–53. [DOI] [PubMed] [Google Scholar]
  • 57. Wick W, Wild‐Bode C, Frank B, Weller M. BCL‐2‐induced glioma cell invasiveness depends on furin‐like proteases. J Neurochem 2004; 91: 1275–1283. [DOI] [PubMed] [Google Scholar]
  • 58. Uchida K, Chaudhary LR, Sugimura Y, Adkisson HD, Hruska KA. Proprotein convertases regulate activity of prostate epithelial cell differentiation markers and are modulated in human prostate cancer cells. J Cell Biochem 2003; 88: 394–399. [DOI] [PubMed] [Google Scholar]
  • 59. Cameron A, Appel J, Houghten RA, Lindberg I. Polyarginines are potent furin inhibitors. J Biol Chem 2000; 275: 36741–36749. [DOI] [PubMed] [Google Scholar]
  • 60. Henrich S, Lindberg I, Bode W, Than ME. Proprotein convertase models based on the crystal structures of furin and kexin: Explanation of their specificity. J Mol Biol 2005; 345: 211–227. [DOI] [PubMed] [Google Scholar]
  • 61. Sarac MS, Cameron A, Lindberg I. The furin inhibitor hexa‐d‐arginine blocks the activation of Pseudomonas aeruginosa exotoxin A in vivo. Infect Immun 2002; 70: 7136–7139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Kibler KV, Miyazato A, Yedavalli VS, Dayton AI, Jacobs BL, Dapolito G, Kim SJ, Jeang KT. Polyarginine inhibits gp160 processing by furin and suppresses productive human immunodeficiency virus type 1 infection. J Biol Chem 2004; 279: 49055–49063. [DOI] [PubMed] [Google Scholar]
  • 63. Empie MW, Laskowski M, Jr . Thermodynamics and kinetics of single residue replacements in avian ovomucoid third domains: Effect on inhibitor interactions with serine proteinases. Biochemistry 1982; 21: 2274–2284. [DOI] [PubMed] [Google Scholar]
  • 64. Komiyama T, Bigler TL, Yoshida N, Noda K, Laskowski M, Jr . Replacement of P1 Leu18 by Glu18 in the reactive site of turkey ovomucoid third domain converts it into a strong inhibitor of Glu‐specific Streptomyces griseus proteinase (GluSGP). J Biol Chem 1991; 266: 10727–10730. [PubMed] [Google Scholar]
  • 65. Lu W, Zhang W, Molloy SS, Thomas G, Ryan K, Chiang Y, Anderson S, Laskowski M, Jr . Arg15‐Lys17‐Arg18 turkey ovomucoid third domain inhibits human furin. J Biol Chem 1993; 268: 14583–14585. [PubMed] [Google Scholar]
  • 66. Ascenzi P, Amiconi G, Menegatti E, Guarneri M, Bolognesi M, Schnebli HP. Binding of the recombinant proteinase inhibitor eglin c from leech Hirudo medicinalis to human leukocyte elastase, bovine alpha‐chymotrypsin and subtilisin Carlsberg: Thermodynamic study. J Enzyme Inhib 1988; 2: 167–172. [DOI] [PubMed] [Google Scholar]
  • 67. Seemuller U, Eulitz M, Fritz H, Strobl A. Structure of the elastase‐cathepsin G inhibitor of the leech Hirudo medicinalis. Hoppe Seylers Z Physiol Chem 1980; 361: 1841–1846. [PubMed] [Google Scholar]
  • 68. Liu ZX, Fei H, Chi CW. Two engineered eglin c mutants potently and selectively inhibiting kexin or furin. FEBS Lett 2004; 556: 116–120. [DOI] [PubMed] [Google Scholar]
  • 69. Cai XH, Zhang Q, Ding DF. Rational redesign of inhibitors of furin/kexin processing proteases by electrostatic mutations. Acta Pharmacol Sin 2004; 25: 1712–1818. [PubMed] [Google Scholar]
  • 70. Owen MC, Brennan SO, Lewis JH, Carrell RW. Mutation of antitrypsin to antithrombin alpha 1‐antitrypsin Pittsburgh (358 Met leads to Arg), a fatal bleeding disorder. N Engl J Med 1983; 309: 694–698. [DOI] [PubMed] [Google Scholar]
  • 71. Brennan SO, Owen MC, Boswell DR, Lewis JH, Carrell RW. Circulating proalbumin associated with a variant proteinase inhibitor. Biochim Biophys Acta 1984; 802: 24–28. [DOI] [PubMed] [Google Scholar]
  • 72. Anderson ED, Thomas L, Hayflick JS, Thomas G. Inhibition of HIV‐1 gp160‐dependent membrane fusion by a furin‐directed alpha 1‐antitrypsin variant. J Biol Chem 1993; 268: 24887–24891. [PubMed] [Google Scholar]
  • 73. Dufour EK, Denault JB, Hopkins PC, Leduc R. Serpin‐like properties of alpha1‐antitrypsin Portland towards furin convertase. FEBS Lett 1998; 426: 41–46. [DOI] [PubMed] [Google Scholar]
  • 74. Basak A, Lotfipour F. Modulating furin activity with designed mini‐PDX peptides: Synthesis and in vitro kinetic evaluation. FEBS Lett 2005; 579: 4813–4821. [DOI] [PubMed] [Google Scholar]
  • 75. Barrett AJ, Starkey PM. The interaction of alpha 2‐macroglobulin with proteinases Characteristics and specificity of the reaction, and a hypothesis concerning its molecular mechanism. Biochem J 1973; 133: 709–724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76. Van Rompaey L, Ayoubi T, Van De Ven W, Marynen P. Inhibition of intracellular proteolytic processing of soluble proproteins by an engineered alpha 2‐macroglobulin containing a furin recognition sequence in the bait region. Biochem J 1997; 326: 507–514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77. Basak A, Cooper S, Roberge AG, Banik UK, Chretien M, Seidah NG. Inhibition of proprotein convertases‐1, ‐7 and furin by diterpines of Andrographis paniculata and their succinoyl esters. Biochem J 1999; 338: 107–113. [PMC free article] [PubMed] [Google Scholar]
  • 78. Podsiadlo P, Komiyama T, Fuller RS, Blum O. Furin inhibition by compounds of copper and zinc. J Biol Chem 2004; 279: 36219–36227. [DOI] [PubMed] [Google Scholar]

Articles from Medicinal Research Reviews are provided here courtesy of Wiley

RESOURCES