Abstract
The intermolecular interaction between four types of anti‐inflammatory inhibitors (oxazoles, pyrazoles, pyrroles and imidazoles) and COX‐2 receptor was studied. The results of docking suggest that they have similar interaction mechanism. The most active compounds of these four types of inhibitors could both form several hydrogen bonds with residues His90, Arg513, Leu352 and Arg120, and develop hydrophobic interaction with residues Phe518, Leu352 and Leu359. This is consistent with the investigation reported by R. G. Kurumbail et al. (Nature. 1996, 384, 644‐648). A common 3D‐QSAR model could be constructed with these four categories of COX‐2 inhibitors using the method of docking‐ guided conformer selection. The cross‐validated q2 values are found as 0.741 and 0.632 for CoMFA and CoMSIA respectively. And the non‐cross‐validated r2 values are 0.887 and 0.885. 54 inhibitors constitute the test set used to validate the model. The results show that this model possesses good predictive ability for diverse COX‐2 inhibitors. Furthermore, a HQSAR model was used to evaluate the influence of substituents on anti‐inflammatory activity. Compared with the results of previous works, our model possesses significantly better prediction ability. It could help us to well understand the interaction mechanism between inhibitors and COX‐2 receptor, and to make quantitative prediction of their inhibitory activities.
Keywords: Cyclooxygenase (COX‐2) Inhibitors, Docking, 3D‐QSAR, HQSAR
References
- 1. Fu J. Y., Masferrer J. L., Seibert K., Raz A., Needleman P., The Induction and Suppression of Prostaglandin H2 Synthase (Cyclooxygenase) in Human Monocytes, J. Biol. Chem. 1990, 265, 16737–16740. [PubMed] [Google Scholar]
- 2. Julémont F., Xavier L., Michaux C., Damas J., Charlier C., Durant F., Pirotte B., Dogné J. M., Spectral and Crystallographic Study of Pyridinic Analogues of Nimesulide: Determination of the Active Form of Methanesulfonamides as COX‐2 SelectiveInhibitors, J. Med. Chem. 2002, 45, 5182–5185 [DOI] [PubMed] [Google Scholar]
- 3. Subbaramaiah K., Zakim D., Weksler B. B., Dannenberg A. J., Inhibition of Cyclooxygenase: A Novel Approach to Cancer Prevention, Proc. Soc. Exp. Biol. Med. 1997, 216, 201–210. [DOI] [PubMed] [Google Scholar]
- 4. Pasinetti G. M., Cyclooxygenase and Inflammation in Alzheimer's Disease: Experimental Approaches and Clinical Intervention, J. Neurosci. Res. 1998, 54, 1–6. [DOI] [PubMed] [Google Scholar]
- 5. Christie A., Bulletin of the World Health Organization, 2002, 1, 80–81. [PMC free article] [PubMed] [Google Scholar]
- 6. Hashimoto H., Imamura K., Haruta J., Wakitani K., 4‐(4‐Cycloalkyl/aryl‐oxazol‐5‐yl) benzenesulfonamides as Selective Cyclooxygenase‐2 Inhibitors: Enhancement of the Selectivity by Introduction of a Fluorine Atom and Identification of a Potent, Highly Selective, and Orally Active COX‐2 Inhibitor JTE‐522, J. Med. Chem. 2002, 45, 1511–1517. [DOI] [PubMed] [Google Scholar]
- 7. Kurumbail R. G., Stevens A. M., Gierse J. K., McDonald J. J., Stegeman R. A., Pak J. Y., Gildehaus D., Miyashiro J. M., Penning T. D., Seibert K., Isakson P. C., Stallings W. C., Structural Basis for Selective Inhibition of Cyclooxygenase‐2 by Antiinflammatory Agents, Nature 1996, 384, 644–648. [DOI] [PubMed] [Google Scholar]
- 8. Leblanc Y., Black W. C., Chan C. C., Charleson S., Delorme D., Denis D., Gauthier J. Y., Grimm E. L., Gardon R., Guay D., Hamel P., Kargman S., Lau C. K., Mancini J., Ouellet M., Percival D., Roy P., Skorey K., Tagari P., Vickers P., Wong E., Xu L., Prasit P., Synthesis and Biological Evaluation of Both Enantionmers of L‐761,000 as Inhibitors of Cyclooxygenase‐1 and 2, Biorg. Med. Chem. Lett. 1996, 6, 731–736. [Google Scholar]
- 9. K. M. Woods, R. W. McCroskey, M. R. Michaelides, (Abbott) Patent WO9839330, 1997.
- 10. Klein T., Nusing R. M., Pfeilschifter J., Ullrich V., Selective Inhibition of Cyclooxygenase 2, Biochem. Pharmacol. 1994, 48, 1605–1610. [DOI] [PubMed] [Google Scholar]
- 11. Chavatte P., Yous S., Maro C., Baurin N., Lesieur D., Three‐Dimensional Quantitative Structure‐Activity Relationships of Cyclo‐oxygenase‐2 (COX‐2) Inhibitors: A Comparative Molecular Field Analysis, J. Med. Chem. 2001, 44, 3223–3230. [DOI] [PubMed] [Google Scholar]
- 12. Desiraju G. R., Gopalakrishnan B., Jetti R. K. R., Nagaraju A., Raveendra D., Sarma J. R. P., Sobhia M. E., Thilagavathi R., Computer‐Aided Design of Selective COX‐2 Inhibitors: Comparative Molecular Field Analysis, Comparative Molecular Similarity Indices Analysis, and Docking Studies of Some 1,2‐Diarylimidazole Derivatives, J. Med. Chem. 2002, 45, 4847–4857. [DOI] [PubMed] [Google Scholar]
- 13. Liu H., Huang X. Q., Shen J. H., Luo X. M., Li M. H., Xiong B., Chen G., Shen J. K., Yang Y. M., Jiang H. L., Chen K. X., Inhibitory Mode of 1,5‐Diarylpyrazole Derivatives against Cyclooxygenase‐2 and Cyclooxygenase‐1: Molecular Docking and 3D QSAR Analyses, J. Med. Chem. 2002, 45, 4816–4827. [DOI] [PubMed] [Google Scholar]
- 14. Soliva R., Almansa C., Kalko S. G., Luque F. J., Orozco M., Theoretical Studies on the Inhibition Mechanism of Cyclooxygenase‐2.Is There a Unique Recognition Site? J. Med. Chem. 2003, 46, 1372–1382. [DOI] [PubMed] [Google Scholar]
- 15. Garg R., Kurup A., Mekapati S. B., Hansch C., Cyclooxygenase (COX) Inhibitors: A Comparative QSAR Study, Chem. Rev. 2003, 103, 703–732. [DOI] [PubMed] [Google Scholar]
- 16. Talley J. J., Bertenshaw S. R., Brown D. L., Carter J. S., Graneto M. J., Koboldt C. M., Masferrer J. L., Norman B. H., Rogier D. J. Jr., Zweifel B. S., Seibert K., 4,5‐Diaryloxazole inhibitors of cyclooxygenase‐2 (COX‐2), Med. Res. Rev. 1999, 19, 199–208. [DOI] [PubMed] [Google Scholar]
- 17. Penning T. D., Talley J. J., Bertenshaw S. R., Carter J. S., Collins P. W., Docter S., Graneto M. J., Lee L. F., Malecha J. W., Miyashiro J. M., Rogers R. S., Rogier D. J., Yu S. S., Anderson G. D., Burton E. G., Cogburn J. N., Gregory S. A., Koboldt C. M., Perkins W. E., Seibert K., Veenhuizen A. W., Zhang Y. Y., Isakson P. C., Synthesis and Biological Evaluation of the 1,5‐Diarylpyrazole Class of Cyclooxygenase‐2 Inhibitors: Identification of 4‐[5‐(4‐Methylphenyl)‐3‐ (trifluoromethyl)‐1H‐pyrazol‐1‐yl]benzenesulfonamide (SC‐58635, Celecoxib), J. Med. Chem. 1997, 40, 1347–1365. [DOI] [PubMed] [Google Scholar]
- 18. Khanna I. K., Weier R. M., Yu Y., Collins P. W., Miyashiro J. M., Koboldt C. M., Veenhuizen A. W., Currie J. L., Seibert K., Isakson P. C., 1,2‐Diarylpyrroles as Potent and Selective Inhibitors of Cyclooxygenase‐2, J. Med. Chem. 1997, 40, 1619–1633. [DOI] [PubMed] [Google Scholar]
- 19. Khanna I. K., Weier R. M., Yu Y., Xu X. D., Koszyk F. J., Collins P. W., Koboldt C. M., Veenhuizen A. W., Perkins W. E., Casler J. J., Masferrer J. L., Zhang Y. Y., Gregory S. A., Seibert K., Isakson P. C., 1,2‐Diarylimidazoles as Potent, Cyclooxygenase‐2 Selective, and Orally Active Antiinflammatory Agents, J. Med. Chem. 1997, 40, 1634–1647. [DOI] [PubMed] [Google Scholar]
- 20. Khanna I. K., Yu Y., Huff R. M., Weier R. M., Xu X., Koszyk F. J., Collins P. W., Cogburn J. N., Isakson P. C., Koboldt C. M., Masferrer J. L., Perkins W. E., Seibert K., Veenhuizen A. W., Yuan J., Yang D. C., Zhang Y. Y., Selective Cyclooxygenase‐2 Inhibitors: Heteroaryl Modified 1,2‐Diarylimidazoles Are Potent, Orally Active Antiinflammatory Agents, J. Med. Chem. 2000, 43, 3168–3185. [DOI] [PubMed] [Google Scholar]
- 21. Gaussian 98 (Revision A.l)+, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al‐Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head‐Gordon, E. S. Replogle and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.
- 22. M. Clark III , Cramer R. D., Opdenbosh N. Van, The Tripos Force Field, J. Comput. Chem. 1989, 10, 982–1012. [Google Scholar]
- 23. SYBYL[Computer Program]. Version 6.9, St. Louis(MO): Tripos Associates Inc(2003).
- 24. Weiner S. J., Kollman P. A., Case D. A., Singh U. C., Ghio C., Alagona G., Profeta S. J., Weiner P., A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins, J. Am. Chem. Soc. 1984, 106, 765–784. [Google Scholar]
- 25. Morris G. M., Goodsell D. S., Halliday R. S., Huey R., Hart W. E., Belew R. K., Olson A. J., Automated Docking Using a Lamarckian Genetic Algorithm and and Empirical Binding Free Energy Function, J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar]
- 26. Morris G. M., Goodsell D. S., Huey R., Olson A. J., Distributed Automated Docking of Flexible Ligands to Proteins: Parallel Applications of AutoDock 2.4, J. Comput.‐Aided Mol. Des. 1996, 10, 293–304. [DOI] [PubMed] [Google Scholar]
- 27. Cho S. J., Tropsha A., Cross‐validated R2‐guided Region Selection for Comparative Molecular Field Analysis (CoMFA): A Simple Method to Achieve Consistent Results, J. Med. Chem. 1995, 38, 1060–1066. [DOI] [PubMed] [Google Scholar]
- 28. Stahle L., Wold S., Multivariate Data Analysis and Experimental Design in Biomedical Research, in Progress in Medicinal Chemistry, G. P. Ellis, G. B. West, (Eds.), Elsevier. 1988, pp. 292–338. [DOI] [PubMed] [Google Scholar]
- 29. Klebe G., Abraham U., Comparative Molecular Similarity Index Analysis (CoMSIA) to Study Hydrogen Bonding Properties and to Score Combinatorial Libraries, J. Comput.‐Aided Mol. Des. 1999, 13, 1–10. [DOI] [PubMed] [Google Scholar]
- 30. Böhm M., Stürzebecher J., Klebe G., 3D QSAR Analyses using CoMFA and CoMSIA to Elucidate Selectivity Differences of Inhibitors Binding to Trypsin, Thrombin and Factor Xa, J. Med. Chem. 1999, 42, 458–477. [DOI] [PubMed] [Google Scholar]
- 31. Wang R. X., Gao Y., Liu L., Lai L. H., All‐Orientation Search and All‐Placement Search in Comparative Molecular Field Analysis, J. Mol. Model. 1998, 4, 276– ‐283. [Google Scholar]
- 32. Heritage T. W., Lowis D. R., Molecular Hologram QSAR, in A. L. Parrill, M. R. Reddy (Eds.), Rational Drug Design. Novel Methodology and Practical Applications, American Chemical Society, Washington, DC, 1999, pp. 212–225. [Google Scholar]
- 33. Avery M. A., Alvim‐Gaston M., Rodrigues C. R., Barreiro E. J., Cohen F. E., Sabnis Y. A., Woolfrey J. R., Structure‐Activity Relationships of the Antimalarial Agent Artemisinin. 6. The Development of Predictive In Vitro Potency Models Using CoMFA and QSAR Methodologies, J. Med. Chem. 2002, 45, 292–303. [DOI] [PubMed] [Google Scholar]
- 34. Stanton D. T., Jurs P. C., Development and use of charged partial surface area descriptors in computer‐assisted quantitative structure‐property relationship studies, Anal. Chem. 1990, 62, 2323–2329. [DOI] [PubMed] [Google Scholar]
