Abstract
Herpes Simplex Virus‐1 is a common infectious agent, but the precise detail of entry and infection of cells has only now begun to be clarified. Four viral surface glycoproteins (gB, gD, gH and gL) are required. This review summarises the known structure and function of each of these essential viral envelope glycoproteins, and explores what is known about their close cooperation with each other in mediating cellular membrane fusion. It is suggested that, following gD binding to one of its entry receptors, membrane fusion is mediated by gB and the heterodimer gH/gL. Significantly, these four entry glycoproteins also play a key role in the interaction between HSV and the host immune system. The glycoproteins serve an important role as targets of adaptive immunity. However, recent studies have demonstrated that the same proteins also play a key role in initiating the early innate immune response to HSV. Understanding the complex functions of these HSV proteins may be essential for successful development of vaccines for HSV. Copyright © 2007 John Wiley & Sons, Ltd.
REFERENCES
- 1. Wittels M, Spear PG. Penetration of cells by herpes simplex virus does not require a low pH‐dependent endocytic pathway. Virus Res 1991; 18(2–3): 271–290. [DOI] [PubMed] [Google Scholar]
- 2. Koyama AH, Uchida T. The mode of entry of herpes simplex virus type 1 into Vero cells. Microbiol Immunol 1987; 31(2): 123–130. [DOI] [PubMed] [Google Scholar]
- 3. Nicola A, McEvoy A, Straus S. Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells. J Virol 2003; 77(9): 5324–5332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. Nicola A, Hou J, Major E, Straus S. herpes simplex virus type 1 enters human epidermal keratinocytes, but not neurons, via a pH‐dependent endocytic pathway. J Virol 2005; 79(12): 7609–7616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Milne R, Nicola A, Whitbeck J, Eisenberg R, Cohen G. Glycoprotein D receptor‐dependent, low‐pH‐independent endocytic entry of herpes simplex virus type 1. J Virol 2005; 79(11): 6655–6663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. Nicola A, Straus S. Cellular and viral requirements for rapid endocytic entry of herpes simplex virus. J Virol 2004; 78(14): 7508–7517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Campadelli‐Fiume G, Cocchi F, Menotti L, Lopez M. The novel receptors that mediate the entry of herpes simplex viruses and animal alphaherpesviruses into cells. Rev Med Virol 2000; 10(5): 305–319. [DOI] [PubMed] [Google Scholar]
- 8. Spear P. Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol 2004; 6(5): 401–410. [DOI] [PubMed] [Google Scholar]
- 9. Shieh M, WuDunn D, Montgomery R, Esko J, Spear P. Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. J Cell Biol 1992; 116(5): 1273–1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. Herold B, Visalli R, Susmarski N, Brandt C, Spear P. Glycoprotein C‐independent binding of herpes simplex virus to cells requires cell surface heparan sulphate and glycoprotein B. J Gen Virol 1994; 75(6): 1211–1222. [DOI] [PubMed] [Google Scholar]
- 11. Laquerre S, Argnani R, Anderson D, Zucchini S, Manservigi R, Glorioso J. Heparan sulfate proteoglycan binding by herpes simplex virus type 1 Glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell‐to‐cell spread. J Virol 1998; 72(7): 6119–6130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Bender F, Whitbeck J, Lou H, Cohen G, Eisenberg R. Herpes simplex virus glycoprotein B binds to cell surfaces independently of heparan sulfate and blocks virus entry. J Virol 2005; 79(18): 11588–11597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. Montgomery R, Warner M, Lum B, Spear P. Herpes simplex virus‐1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 1996; 87(3): 427–436. [DOI] [PubMed] [Google Scholar]
- 14. Whitbeck J, Peng C, Lou H, et al Glycoprotein D of herpes simplex virus (HSV) binds directly to HVEM, a member of the tumor necrosis factor receptor superfamily and a mediator of HSV entry. J Virol 1997; 71(8): 6083–6093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Geraghty R, Krummenacher C, Cohen G, Eisenberg R, Spear P. Entry of alphaherpesviruses mediated by poliovirus receptor‐related protein 1 and poliovirus receptor. Science 1998; 280(5369): 1618–1620. [DOI] [PubMed] [Google Scholar]
- 16. Shukla D, Liu J, Blaiklock P, et al A novel role for 3‐O‐sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 1999; 99(1): 13–22. [DOI] [PubMed] [Google Scholar]
- 17. Richart S, Simpson S, Krummenacher C, et al Entry of herpes simplex virus type 1 into primary sensory neurons in vitro is mediated by nectin‐1/HveC. J Virol 2003; 77(5): 3307–3311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Tiwari V, Clement C, Xu D, Valyi‐Nagy T, Yue BYJT, Shukla D. Role for 3‐O‐sulfated heparan sulfate as the receptor for herpes simplex virus type 1 entry into primary human corneal fibroblasts. J Virol 2006; 80(18): 8970–8980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. Tiwari V, Clement C, Scanlan P, Kowlessur D, Yue B, Shukla D. A role for herpesvirus entry mediator as the receptor for herpes simplex virus 1 entry into primary human trabecular meshwork cells. J Virol 2005; 79(20): 13173–13179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Krummenacher C, Baribaud F, Ponce de Leon M, et al Comparative usage of herpesvirus entry mediator A and nectin‐1 by laboratory strains and clinical isolates of herpes simplex virus. Virology 2004; 322(2): 286–299. [DOI] [PubMed] [Google Scholar]
- 21. Watson RJ, Vande Woude GF. DNA sequence of an immediate‐early gene (IEmRNA‐5) of herpes simplex virus type I. Nucleic Acids Res 1982; 10(3): 979–991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Carfi A, Willis S, Whitbeck J, et al Herpes simplex virus glycoprotein D bound to the human receptor HveA. Mol Cell 2001; 8(1): 169–179. [DOI] [PubMed] [Google Scholar]
- 23. Connolly S, Landsburg D, Carfi A, Wiley D, Cohen G, Eisenberg R. Structure‐based mutagenesis of herpes simplex virus glycoprotein D defines three critical regions at the gD‐HveA/HVEM binding interface. J Virol 2003; 77(14): 8127–8140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. Connolly S, Landsburg D, Carfi A, et al Potential nectin‐1 binding site on herpes simplex virus glycoprotein D. J Virol 2005; 79(2): 1282–1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Krummenacher C, Supekar VM, Whitbeck JC, et al Structure of unliganded HSV gD reveals a mechanism for receptor‐mediated activation of virus entry. EMBO 2005; 24(23): 4144–4153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. Whitbeck J, Muggeridge M, Rux A, et al The major neutralizing antigenic site on herpes simplex virus glycoprotein D overlaps a receptor‐binding domain. J Virol 1999; 73(12): 9879–9890. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. Manoj S, Jogger C, Myscofski D, Yoon M, Spear P. Inaugural article: mutations in herpes simplex virus glycoprotein D that prevent cell entry via nectins and alter cell tropism. PNAS 2004; 101(34): 12414–12421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. Chiang HY, Cohen GH, Eisenberg RJ. Identification of functional regions of herpes simplex virus glycoprotein gD by using linker‐insertion mutagenesis. J Virol 1994; 68(4): 2529–2543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. Cairns T, Milne R, Ponce‐de‐Leon M, et al Structure‐function analysis of herpes simplex virus type 1 gD and gH‐gL: clues from gDgH chimeras. J Virol 2003; 77(12): 6731–6742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Cocchi F, Fusco D, Menotti L, et al The soluble ectodomain of herpes simplex virus gD contains a membrane‐proximal pro‐fusion domain and suffices to mediate virus entry. PNAS 2004; 101(19): 7445–7450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Cai WZ, Person S, DebRoy C, Gu BH. Functional regions and structural features of the gB glycoprotein of herpes simplex virus type 1. An analysis of linker insertion mutants. J Mol Biol 1988; 201(3): 575–588. [DOI] [PubMed] [Google Scholar]
- 32. Zago A, Jogger C, Spear P. Use of herpes simplex virus and pseudorabies virus chimeric glycoprotein D molecules to identify regions critical for membrane fusion. PNAS 2004; 101(50): 17498–17503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33. Wilson IA, Skehel JJ, Wiley DC. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 1981; 289(5796): 366–373. [DOI] [PubMed] [Google Scholar]
- 34. Bullough P, Hughson F, Skehel J, Wiley D. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 1994; 371(6492): 37–43. [DOI] [PubMed] [Google Scholar]
- 35. Yin H, Wen X, Paterson R, Lamb R, Jardetzky T. Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation. Nature 2006; 439(7072): 38–44. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36. Fass D, Harrison SC, Kim PS. Retrovirus envelope domain at 1.7 angstrom resolution. Nat Struct Biol 2006; 3(5): 465–469. [DOI] [PubMed] [Google Scholar]
- 37. Weissenhorn W, Carfi A, Lee K, Skehel J, Wiley D. Crystal structure of the ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain. Mol Cell 1998; 2(5): 605–616. [DOI] [PubMed] [Google Scholar]
- 38. Xu Y, Lou Z, Liu Y, et al Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core. J Biol Chem 2004; 279(47): 49414–49419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39. Colman P, Lawrence M. The structural biology of type I viral membrane fusion. Nat Rev Mol Cell Biol 2003; 4(4): 309–319. [DOI] [PubMed] [Google Scholar]
- 40. Jardetzky T, Lamb R. Virology A class act. Nature 2004; 427(6972): 307–308. [DOI] [PubMed] [Google Scholar]
- 41. Schibli DJ, Weissenhorn W. Class I and class II viral fusion protein structures reveal similar principles in membrane fusion. Mol Membr Biol 2004; 21(6): 361–371. [DOI] [PubMed] [Google Scholar]
- 42. Rey F, Heinz F, Mandl C, Kunz C, Harrison S. The envelope glycoprotein from tick‐borne encephalitis virus at 2 A resolution. Nature 1995; 375(6529): 291–298. [DOI] [PubMed] [Google Scholar]
- 43. Modis Y, Ogata S, Clements D, Harrison S. A ligand‐binding pocket in the dengue virus envelope glycoprotein. PNAS 2003; 100(12): 6986–6991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44. Lescar J, Roussel A, Wien M, et al The fusion glycoprotein shell of semliki forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 2001; 105(1): 137–148. [DOI] [PubMed] [Google Scholar]
- 45. Kielian M. Class II virus membrane fusion proteins. Virology 2006; 344(1): 38–47. [DOI] [PubMed] [Google Scholar]
- 46. Gompels U, Minson A. The properties and sequence of glycoprotein H of herpes simplex virus type 1. Virology 1986; 153(2): 230–247. [DOI] [PubMed] [Google Scholar]
- 47. Forrester A, Farrell H, Wilkinson G, Kaye J, Davis‐Poynter N, Minson T. Construction and properties of a mutant of herpes simplex virus type 1 with glycoprotein H coding sequences deleted. J Virol 1992; 66(1): 341–348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48. Pereira L. Function of glycoprotein B homologues of the family herpesviridae. Infect Agents Dis 1994; 3(1): 9–28. [PubMed] [Google Scholar]
- 49. Gianni T, Menotti L, Campadelli‐Fiume G. A heptad repeat in herpes simplex virus 1 gH, located downstream of the {α}‐Helix with attributes of a fusion peptide, is critical for virus entry and fusion. J Virol 2005; 79(11): 7042–7049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50. Gianni T, Martelli P, Casadio R, Campadelli‐Fiume G. The ectodomain of herpes simplex virus glycoprotein H contains a membrane {α}‐Helix with attributes of an internal fusion peptide, positionally conserved in the herpesviridae family. J Virol 2005; 79(5): 2931–2940. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51. Peng T, Ponce de Leon M, Novotny M, et al Structural and antigenic analysis of a truncated form of the herpes simplex virus glycoprotein gH‐gL complex. J Virol 1998; 72(7): 6092–6103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52. Dubin G, Jiang H. Expression of herpes simplex virus type 1 glycoprotein L (gL) in transfected mammalian cells: evidence that gL is not independently anchored to cell membranes. J Virol 1995; 69(7): 4564–4568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53. Hutchinson L, Brown H, Wargent V, et al A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. J Virol 1992; 66(4): 2240–2250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54. Roop D, Hutchinson L, Johnson D. A mutant herpes simplex virus type 1 unable to express glycoprotein L cannot enter cells, and its particles lack glycoprotein H. J Virol 1993; 67(4): 2285–2297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55. Bzik DJ, Fox BA, DeLuca NA, Person S. Nucleotide sequence specifying the glycoprotein gene, gB, of herpes simplex virus type 1. Virology 1984; 133(2): 301–314. [DOI] [PubMed] [Google Scholar]
- 56. Pellett PE, Kousoulas KG, Pereira L, Roizman B. Anatomy of the herpes simplex virus 1 strain F glycoprotein B gene: primary sequence and predicted protein structure of the wild type and of monoclonal antibody‐resistant mutants. J Virol 1985; 53 (1): 243–253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57. Rasile L, Ghosh K, Raviprakash K, Ghosh HP. Effects of deletions in the carboxy‐terminal hydrophobic region of herpes simplex virus glycoprotein gB on intracellular transport and membrane anchoring. J Virol 1993; 67(8): 4856–4866. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58. Heldwein E, Lou H, Bender F, Cohen G, Eisenberg R, Harrison S. Crystal structure of glycoprotein B from herpes simplex virus 1. Science 2006; 313(5784): 217–220. [DOI] [PubMed] [Google Scholar]
- 59. Highlander SL, Cai WH, Person S, Levine M, Glorioso JC. Monoclonal antibodies define a domain on herpes simplex virus glycoprotein B involved in virus penetration. J Virol 1988; 62(6): 1881–1889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60. Roche S, Bressanelli S, Rey F, Gaudin Y. Crystal structure of the low‐pH form of the vesicular stomatitis virus glycoprotein G. Science 2006; 313(5784): 187–191. [DOI] [PubMed] [Google Scholar]
- 61. Cohen GH, Ponce de Leon M, Nichols C. Isolation of a herpes simplex virus‐specific antigenic fraction which stimulates the production of neutralizing antibody. J Virol 1972; 10(5): 1021–1030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62. Balachandran N, Bacchetti S, Rawls WE. Protection against lethal challenge of BALB/c mice by passive transfer of monoclonal antibodies to five glycoproteins of herpes simplex virus type 2. Infect Immun 1982; 37(3): 1132–1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63. Chan W, Lukig M, Liew F. Helper T cells induced by an immunopurified herpes simplex virus type I (HSV‐I) 115 kilodalton glycoprotein (gB) protect mice against HSV‐I infection. J Exp Med 1985; 162(4): 1304–1318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64. Eisenberg RJ, Cerini CP, Heilman CJ, et al Synthetic glycoprotein D‐related peptides protect mice against herpes simplex virus challenge. J Virol 1985; 56(3): 1014–1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65. Peng T, Ponce‐de‐Leon M, Jiang H, et al The gH‐gL complex of herpes simplex virus (HSV) stimulates neutralizing antibody and protects mice against HSV type 1áChallenge. J Virol 1998; 72(1): 65–72. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66. Browne H, Baxter V, Minson T. Analysis of protective immune responses to the glycoprotein H‐glycoprotein L complex of herpes simplex virus type 1. J Gen Virol 1993; 74(Pt 12): 2813–2817. [DOI] [PubMed] [Google Scholar]
- 67. Zarling J, Moran P, Burke R, Pachl C, Berman P, Lasky L. Human cytotoxic T cell clones directed against herpes simplex virus‐ infected cells. IV. Recognition and activation by cloned glycoproteins gB and gD. J Immunol 1986; 136(12): 4669–4673. [PubMed] [Google Scholar]
- 68. Blacklaws BA, Nash AA, Darby G. Specificity of the immune response of mice to herpes simplex virus glycoproteins B and D constitutively expressed on L cell lines. J Gen Virol 1987; 68(Pt 4): 1103–1114. [DOI] [PubMed] [Google Scholar]
- 69. Johnson R, Lancki D, Fitch F, Spear P. Herpes simplex virus glycoprotein D is recognized as antigen by CD4+ and CD8+ T lymphocytes from infected mice. Characterization of T cell clones. J Immunol 1990; 145(2): 702–710. [PubMed] [Google Scholar]
- 70. Nugent CT, Wolcott RM, Chervenak R, Jennings SR. Analysis of the cytolytic T‐lymphocyte response to herpes simplex virus type 1 glycoprotein B during primary and secondary infection. J Virol 1994; 68(11): 7644–7648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71. Mikloska Z, Cunningham A. Herpes simplex virus type 1 glycoproteins gB, gC and gD are major targets for CD4 T‐lymphocyte cytotoxicity in HLA‐DR expressing human epidermal keratinocytes. J Gen Virol 1998; 79(2): 353–361. [DOI] [PubMed] [Google Scholar]
- 72. Medici M, Sciortino M, Perri D, et al Protection by herpes simplex virus glycoprotein D against Fas‐mediated apoptosis: role of nuclear factor {κ}B. J Biol Chem 2003; 278(38): 36059–36067. [DOI] [PubMed] [Google Scholar]
- 73. Rinaldo CR Jr., Richter BS, Black PH, Callery R, Chess L, Hirsch MS. Replication of herpes simplex virus and cytomegalovirus in human leukocytes. J Immunol 1978; 120 (1): 130–136. [PubMed] [Google Scholar]
- 74. Posavad CM, Newton JJ, Rosenthal KL. Infection and inhibition of human cytotoxic T lymphocytes by herpes simplex virus. J Virol 1994; 68(6): 4072–4074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75. Raftery M, Behrens C, Muller A, Krammer P, Walczak H, Schonrich G. Herpes simplex virus type 1 infection of activated cytotoxic T cells: induction of fratricide as a mechanism of viral immune evasion. J Exp Med 1999; 190(8): 1103–1114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76. Sloan D, Han J, Sandifer T, et al Inhibition of TCR signaling by herpes simplex virus. J Immunol 2006; 176(3): 1825–1833. [DOI] [PubMed] [Google Scholar]
- 77. La S, Kim J, Kwon BS, Kwon B. Herpes simplex virus type 1 glycoprotein D inhibits T‐cell proliferation. Mol Cells 2002; 14(3): 389–403. [PubMed] [Google Scholar]
- 78. Stanberry LR. Clinical trials of prophylactic and therapeutic herpes simplex virus vaccines. Herpes 2004; 11(Suppl. 3): 161A–169A. [PubMed] [Google Scholar]
- 79. Koelle DM. Vaccines for herpes simplex virus infections. Curr Opin Investig Drugs 2006; 7(2): 136–141. [PubMed] [Google Scholar]
- 80. Meignier B, Longnecker R, Roizman B. In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020: construction and evaluation in rodents. J Infect Dis 1988; 158(3): 602–614. [DOI] [PubMed] [Google Scholar]
- 81. Whitley RJ. Prospects for vaccination against herpes simplex virus. Pediatr Ann 1993; 22(12): 729–732. [DOI] [PubMed] [Google Scholar]
- 82. Ghiasi H, Nesburn A, Wechsler S. Vaccination with a cocktail of seven recombinantly expressed HSV‐1 glycoproteins protects against ocular HSV‐1 challenge more efficiently than vaccination with any individual glycoprotein. Vaccine 1996; 14(2): 107–112. [DOI] [PubMed] [Google Scholar]
- 83. Manservigi R, Boero A, Argnani R, et al Immunotherapeutic activity of a recombinant combined gB‐gD‐gE vaccine against recurrent HSV‐2 infections in a guinea pig model. Vaccine 2005; 23(7): 865–872. [DOI] [PubMed] [Google Scholar]
- 84. Hirano M, Nakamura S, Mitsunaga F, et al Efficacy of a B virus gD DNA vaccine for induction of humoral and cellular immune responses in Japanese macaques. Vaccine 2002; 20(19–20): 2523–2532. [DOI] [PubMed] [Google Scholar]
- 85. Zhu X, Ramos TV, Gras‐Masse H, Kaplan BE, BenMohamed L. Lipopeptide epitopes extended by an nepsilon‐palmitoyl‐lysine moiety increase uptake and maturation of dendritic cells through a toll‐like receptor‐2 pathway and trigger a Th1‐dependent protective immunity. Eur J Immunol 2004; 34(11): 3102–3114. [DOI] [PubMed] [Google Scholar]
- 86. Osorio Y, Sharifi BG, Perng G, Ghiasi NS, Ghiasi H. The role of T(H)1 and T(H)2 cytokines in HSV‐1‐induced corneal scarring. Ocul Immunol Inflamm 2002; 10(2): 105–116. [DOI] [PubMed] [Google Scholar]
- 87. Corey L, Langenberg A, Ashley R, et al Recombinant glycoprotein vaccine for the prevention of genital HSV‐2 infection: two randomized controlled trials. JAMA 1999; 282(4): 331–340. [DOI] [PubMed] [Google Scholar]
- 88. Stanberry L, Spruance S, Cunningham A, et al Glycoprotein‐D‐adjuvant vaccine to prevent genital herpes. N Engl J Med 2002; 347(21): 1652–1661. [DOI] [PubMed] [Google Scholar]
- 89. Hendrzak JA, Morahan PS. The role of macrophages and macrophage cytokines in host resistance to herpes simplex virus. Immunol Ser 1994; 60: 601–617. [PubMed] [Google Scholar]
- 90. Hoves S, Niller H, Krause S, et al Decreased T cell stimulatory capacity of monocyte‐derived human macrophages following herpes simplex virus type 1 Infection. Scand J Immunol 2001; 54(1–2): 93–99. [DOI] [PubMed] [Google Scholar]
- 91. Malmgaard L, Melchjorsen J, Bowie A, Mogensen S, Paludan S. Viral activation of macrophages through TLR‐dependent and ‐independent pathways. J Immunol 2004; 173(11): 6890–6898. [DOI] [PubMed] [Google Scholar]
- 92. Salio M, Cella M, Suter M, Lanzavecchia A. Inhibition of dendritic cell maturation by herpes simplex virus. Eur J Immunol 1999; 29(10): 3245–3253. [DOI] [PubMed] [Google Scholar]
- 93. Kruse M, Rosorius O, Kratzer F, et al Mature dendritic cells infected with herpes simplex virus type 1 exhibit inhibited T‐cell stimulatory capacity. J Virol 2000; 74(15): 7127–7136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94. Pollara G, Speidel K, Samady L, et al Herpes simplex virus infection of dendritic cells: balance among activation, inhibition, and immunity. J Infect Dis 2002; 187: 165–178. [DOI] [PubMed] [Google Scholar]
- 95. Pollara G, Jones M, Handley M, et al Herpes simplex virus type‐1‐induced activation of myeloid dendritic cells: the roles of virus cell interaction and paracrine type I IFN secretion. J Immunol 2004; 173(6): 4108–4119. [DOI] [PubMed] [Google Scholar]
- 96. Kassim S, Rajasagi N, Zhao X, Chervenak R, Jennings S. In vivo ablation of CD11c‐positive dendritic cells increases susceptibility to herpes simplex virus type 1 infection and diminishes NK and T‐cell responses. J Virol 2006; 80(8): 3985–3993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97. Marsters S, Ayres T, Skubatch M, Gray C, Rothe M, Ashkenazi A. Herpesvirus entry mediator, a member of the tumor necrosis factor receptor (TNFR) family, interacts with members of the TNFR‐associated factor family and activates the transcription factors NF‐kappa B and AP‐1. J Biol Chem 1997; 272(22): 14029–14032. [DOI] [PubMed] [Google Scholar]
- 98. Tamada K, Shimozaki K, Chapoval A, et al LIGHT, a TNF‐like molecule, costimulates T cell proliferation and is required for dendritic cell‐mediated allogeneic T cell response. J Immunol 2000; 164(8): 4105–4110. [DOI] [PubMed] [Google Scholar]
- 99. Hikichi Y, Matsui H, Tsuji I, et al LIGHT, a member of the TNF superfamily, induces morphological changes and delays proliferation in the human rhabdomyosarcoma cell line RD. Biochem Biophys Rese Commun 2001; 289(3): 670–677. [DOI] [PubMed] [Google Scholar]
- 100. Pollara G, Katz D, Chain B. LIGHTing up dendritic cell activation: immune regulation and viral exploitation. J Cell Physiol 2005; 205(2): 161–162. [DOI] [PubMed] [Google Scholar]
- 101. Ankel H, Westra D, Welling‐Wester S, Lebon P. Induction of interferon‐[alpha] by glycoprotein D of herpes simplex virus: a possible role of chemokine receptors. Virology 1998; 251(2): 317–326. [DOI] [PubMed] [Google Scholar]
- 102. Mogensen T, Paludan S. Molecular pathways in virus‐induced cytokine production. Microbiol Mol Biol Rev 2001; 65(1): 131–150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103. Melchjorsen J, Siren J, Julkunen I, Paludan S, Matikainen S. Induction of cytokine expression by herpes simplex virus in human monocyte‐derived macrophages and dendritic cells is dependent on virus replication and is counteracted by ICP27 targeting NF‐{κ}B and IRF‐3. J Gen Virol 2006; 87(5): 1099–1108. [DOI] [PubMed] [Google Scholar]
- 104. Luft T, Luetjens P, Hochrein H, et al IFN‐{α} enhances CD40 ligand‐mediated activation of immature monocyte‐derived dendritic cells. Int Immunol 2002; 14(4): 367–380. [DOI] [PubMed] [Google Scholar]