Abstract
Amongst the 60 viral species reported to be associated with bats, 59 are RNA viruses, which are potentially important in the generation of emerging and re‐emerging infections in humans. The prime examples of these are the lyssaviruses and Henipavirus. The transmission of Nipah, Hendra and perhaps SARS coronavirus and Ebola virus to humans may involve intermediate amplification hosts such as pigs, horses, civets and primates, respectively. Understanding of the natural reservoir or introductory host, the amplifying host, the epidemic centre and at‐risk human populations are crucial in the control of emerging zoonosis. The association between the bat coronaviruses and certain lyssaviruses with particular bat species implies co‐evolution between specific viruses and bat hosts. Cross‐infection between the huge number of bat species may generate new viruses which are able to jump the trans‐mammalian species barrier more efficiently. The currently known viruses that have been found in bats are reviewed and the risks of transmission to humans are highlighted. Certain families of bats including the Pteropodidae, Molossidae, Phyllostomidae, and Vespertilionidae are most frequently associated with known human pathogens. A systematic survey of bats is warranted to better understand the ecology of these viruses. Copyright © 2006 John Wiley & Sons, Ltd.
Supporting information
REFERENCES
- 1. Palmer SR, Lord Soulsby, Simpson DIH. (eds). Zoonoses: Biology, Clinical Practice, and Public Health Control. Oxford University Press: Oxford, 1998. [Google Scholar]
- 2. Woolhouse ME, Gowtage‐Sequeria S. Host range and emerging and reemerging pathogens. Emerg Infect Dis 2005; 11: 1842–1847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3. Food and Agriculture Organization of the United Nations . 2005. FAO Statistical Databases. http://faostat.fao.org/faostat/form?collection=Production.Livestock.Stocks& Domain=Production& servlet=1& hasbulk=& version=ext& language=EN. [13 April, 2006.]
- 4. Kalish ML, Wolfe ND, Ndongmo CB, et al Hunters exposed to simian immunodeficiency virus. Emerg Infect Dis 2005; 12: 1928–1930. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Wolfe ND, Daszak P, Kilpatrick AM, Burke DS. Bushmeat hunting, deforestation, and prediction of zoonotic disease emergence. Emerg Infect Dis 2005; 12: 1822–1827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. Wolfe ND, Switzer WM, Carr JK, et al Naturally acquired simian retrovirus infections in central African hunters. Lancet 2004; 363: 932–937. [DOI] [PubMed] [Google Scholar]
- 7. Integrated Taxonomic Information System . http://itis.gbif.net. [14 April, 2006.]
- 8. Nowak RM. Walker's Bats of the World. Johns Hopkins University Press: Baltimore, 1994. [Google Scholar]
- 9. Kunz TH, Lumsden LF. Ecology of cavity and foliage roosting bats In Bat Ecology, Kunz TH, Fenton MB. (eds). The University of Chicago Press: Chicago, 2003; 3–89. [Google Scholar]
- 10. Neuweiler G. The Biology of the Bats. Oxford University Press: Oxford, 2000. [Google Scholar]
- 11. Barclay RMR, Harder LD. Life histories of bats: life in the slow lane In Bat Ecology, Kunz TH, Fenton MB. (eds). The University of Chicago Press: Chicago, 2003; 209–253. [Google Scholar]
- 12. Speakman JR, Thomas DW. Physiological ecology and energetics of bats In Bat Ecology, Kunz TH, Fenton MB. (eds). The University of Chicago Press: Chicago, 2003; 430–490. [Google Scholar]
- 13. Fleming TH, Eby P. Ecology of bat migration In Bat Ecology, Kunz TH, Fenton MB. (eds). The University of Chicago Press: Chicago, 2003; 156–208. [Google Scholar]
- 14. Gonçalves MA, Sá‐Neto RJ, Brazil TK. Outbreak of aggressions and transmission of rabies in human beings by vampire bats in northeastern Brazil. Rev Soc Bras Med Trop 2002; 35: 461–464. [DOI] [PubMed] [Google Scholar]
- 15. Schneider MC, Aron J, Santos‐Burgoa C, Uieda W, Ruiz‐Velazco S. Common vampire bat attacks on humans in a village of the Amazon region of Brazil. Cad Saude Publica 2001; 17: 1531–1536. [DOI] [PubMed] [Google Scholar]
- 16. Cross JH, Lien JC, Huang WC, Lien SC, Chiu SF. Japanese encephalitis virus surveillance in Taiwan. II. Isolations from mosquitoes and bats in Taipei area 1969–1970. Taiwan Yi Xue Hui Za Zhi 1971; 70: 681–686. [PubMed] [Google Scholar]
- 17. Lampo M, Feliciangeli MD, Marquez LM, Bastidas C, Lau P. A possible role of bats as a blood source for the Leishmania vector Lutzomyia longipalpis (Diptera: Psychodidae). Am J Trop Med Hyg 2000; 62: 718–719. [DOI] [PubMed] [Google Scholar]
- 18. Srinivasan A, Burton EC, Kuehnert MJ, et al Transmission of rabies virus from an organ donor to four transplant recipients. N Engl J Med 2005; 352: 1103–1111. [DOI] [PubMed] [Google Scholar]
- 19. Daszak P, Cunningham AA, Hyatt AD. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop 2001; 78: 103–116. [DOI] [PubMed] [Google Scholar]
- 20. Weiss RA, McMichael AJ. Social and environmental risk factors in the emergence of infectious diseases. Nat Med 2004; 10(12 Suppl): S70–76. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Constantine DG. Geographic translocation of bats: known and potential problems. Emerg Infect Dis 2003; 9: 17–21. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Downs WG, Anderson CR, Spence L, Aitken THG, Greenhall AG. Tacaribe virus, a new agent isolated from Artibeus bats and mosquitoes in Trinidad, West Indies. Am J Trop Med Hyg 1963; 12: 640–646. [DOI] [PubMed] [Google Scholar]
- 23. Price JL. Serological evidence of infection of Tacaribe virus and arboviruses in Trinidadian bats. Am J Trop Med Hyg 1978; 27: 162–167. [DOI] [PubMed] [Google Scholar]
- 24. Williams JE, Imlarp S, Top FH Jr, Cavanaugh DC, Russell PK. Kaeng Khoi virus from naturally infected bedbugs (Cimicidae) and immature free‐tailed bats. Bull World Health Organ 1976; 53: 365–369. [PMC free article] [PubMed] [Google Scholar]
- 25. Osborne JC, Rupprecht CE, Olson JG, et al Isolation of Kaeng Khoi virus from dead Chaerephon plicata bats in Cambodia. J Gen Virol 2003; 84: 2685–2689. [DOI] [PubMed] [Google Scholar]
- 26. Charrel RN, Gallian P, Navarro‐Marí JM, et al Emergence of Toscana virus in Europe. Emerg Infect Dis 2005; 11: 1657–1663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. Verani P, Ciufolini MG, Caciolli S, et al Ecology of viruses isolated from sand flies in Italy and characterized of a new Phlebovirus (Arabia virus). Am J Trop Med Hyg 1988; 38: 433–439. [DOI] [PubMed] [Google Scholar]
- 28. Zhong NS, Zheng BJ, Li YM, et al Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. Lancet 2003; 362: 1353–1358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. Guan Y, Zheng BJ, He YQ, et al Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 2003; 302: 276–278. [DOI] [PubMed] [Google Scholar]
- 30. Guan Y, Zheng BJ, He YQ, et al Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 2003; 302: 276–278. [DOI] [PubMed] [Google Scholar]
- 31. Leung GM, Lim WW, Ho LM, et al Seroprevalence of IgG antibodies to SARS‐coronavirus in asymptomatic or subclinical population groups. Epidemiol Infect 2006; 134: 211–221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32. Che XY, Di B, Zhao GP, et al A patient with asymptomatic severe acute respiratory syndrome (SARS) and antigenemia from the 2003–2004 community outbreak of SARS in Guangzhou, China. Clin Infect Dis 2006; 43: e1–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33. World Health Organization . Consensus document on the epidemiology of severe acute respiratory syndrome (SARS): 2003. http://www.who.int/csr/sars/en/WHOconsensus.pdf.
- 34. Kuiken T, Fouchier RA, Schutten M, et al Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 2003; 362: 263–270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35. Martina BE, Haagmans BL, Kuiken T, et al SARS virus infection of cats and ferrets. Nature 2003; 425: 915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36. Greenough TC, Carville A, Coderre J, et al Pneumonitis and multi‐organ system disease in common marmosets (Callithrix jacchus) infected with the severe acute respiratory syndrome‐associated coronavirus. Am J Pathol 2005; 167: 455–463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37. Roberts A, Vogel L, Guarner J, et al Severe acute respiratory syndrome coronavirus infection of golden Syrian hamsters. J Virol 2005; 79: 503–511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. McAuliffe J, Vogel L, Roberts A, et al Replication of SARS coronavirus administered into the respiratory tract of African Green, rhesus and cynomolgus monkeys. Virology 2004; 330: 8–15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39. Lau SK, Woo PC, Li KS, et al Severe acute respiratory syndrome coronavirus‐like virus in Chinese horseshoe bats. Proc Natl Acad Sci USA 2005; 102: 14040–14045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40. Poon LL, Chu DK, Chan KH, et al Identification of a novel coronavirus in bats. J Virol 2005; 79: 2001–2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41. Woo PCY, Lau SKP, Li KSM, et al Molecular diversity of coronaviruses in bats. Virology 2006; 351: 180–187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42. Li W, Shi Z, Yu M, et al Bats are natural reservoirs of SARS‐like coronaviruses. Science 2005; 310: 676–679. [DOI] [PubMed] [Google Scholar]
- 43. World Health Organization . Marburg haemorrhagic fever in Angola – update 25. 24 August, 2005. http://www.who.int/csr/don/2005_08_24/en/index.html [13 April, 2006.] [PubMed]
- 44. World Health Organization . Ebola haemorrhagic fever in the Republic of the Congo – update 2. 16 June, 2005. http://www.who.int/csr/don/2005_06_16/en/index.html [13 April, 2006.]
- 45. Pourrut X, Kumulungui B, Wittmann T, et al The natural history of Ebola virus in Africa. Microb Infect 2005; 7: 1005–1014. [DOI] [PubMed] [Google Scholar]
- 46. Leroy EM, Kumulungui B, Pourrut X, et al Fruit bats as reservoirs of Ebola virus. Nature 2005; 438: 575–576. [DOI] [PubMed] [Google Scholar]
- 47. Paul SD, Rajagopalan PK, Sreenivasan MA. Isolation of the West Nile virus from the frugivorous bat, Rousettus leschenaulti . Indian J Med Res 1970; 58: 1169–1171. [PubMed] [Google Scholar]
- 48. Centers for Disease Control and Prevention (CDC) . West Nile virus activity—United States, September 29 – October 5, 2004. MMWR Morb Mortal Wkly Rep 2004; 53: 922–923. [PubMed] [Google Scholar]
- 49. Marfin AA, Petersen LR, Eidson M, et al Widespread West Nile virus activity, eastern United States, 2000. Emerg Infect Dis 2001; 7: 730–735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50. Pilipski JD, Pilipski LM, Risley LS. West Nile virus antibodies in bats from New Jersey and New York. J Wildl Dis 2004; 40: 335–337. [DOI] [PubMed] [Google Scholar]
- 51. Sulkin SE, Allen R, Sims R. Studies of arthropod‐borne viruse infections in Chiroptera. I. Susceptibility of insectivorous species to experimental infection with Japanese B and St. Louis encephalitis viruses. Am J Trop Med Hyg 1963; 12: 800–814. [PubMed] [Google Scholar]
- 52. Sulkin SE, Allen R, Sims R. Studies of arthropod‐borne virus infections in Chiroptera. III. Influence of environmental temperature on experimental infection with Japanese B and St. Louis encephalitis viruses. Am J Trop Med Hyg 1966; 15: 406–417. [PubMed] [Google Scholar]
- 53. Sulkin SE, Sims R, Allen R. Studies of arthropod‐borne virus infections in Chiroptera. II. Experiments with Japanese B and St. Louis encephalitis viruses in the gravid bat. Evidence of transplacental transmission. Am J Trop Med Hyg 1964; 13: 475–481. [PubMed] [Google Scholar]
- 54. Herbold JR, Heuschele WP, Berry RL, Parsons MA. Reservoir of St. Louis encephalitis virus in Ohio bats. Am J Vet Res 1983; 44: 1889–1893. [PubMed] [Google Scholar]
- 55. Sulkin SE, Allen R, Miura T, Toyokawa K. Studies of arthropod‐borne virus infections in chiroptera. VI. Isolation of Japanese B encephalitis virus from naturally infected bats. Am J Trop Med Hyg 1970; 19: 77–87. [DOI] [PubMed] [Google Scholar]
- 56. Platt KB, Mangiafico JA, Rocha OJ, et al Detection of dengue virus neutralising antibodies in bats from Costa Rica and Ecuador. J Med Entomol 2000; 37: 965–967. [DOI] [PubMed] [Google Scholar]
- 57. Zhang H, Yang X, Li G. Detection of dengue virus genome RNA in some kinds of animals caught from dengue fever endemic areas in Hainan Island with reverse transcription‐polymerase chain reaction. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 1998; 12: 226–228. [PubMed] [Google Scholar]
- 58. Pavri KM, Singh KR. Kyasanur Forest disease virus infection in the frugivorous bat, Cynopterus sphinx . Indian J Med Res 1968; 56: 1202–1204. [PubMed] [Google Scholar]
- 59. Rajagopalan PK, Paul SD, Sreenivasan MA. Isolation of Kyasanur Forest disease virus from the insectivorous bat, Rhinolophus rouxi and from Ornithodoros ticks. Indian J Med Res 1969; 57: 805–808. [PubMed] [Google Scholar]
- 60. Bell JF, Thomas LA. A new virus, MML, enzootic in bats (Myotis lucifugus) of Montana. Am J Trop Med Hyg 1964; 13: 607–612. [DOI] [PubMed] [Google Scholar]
- 61. Charlier N, Leyssen P, Pleij CWA, et al Complete genome sequence of Montana Myotis leukoencephalitis virus, phylogenetic analysis and comparative study of the 3′ untranslated region of flaviviruses with no known vector. J Gen Virol 2002; 83: 1875–1885. [DOI] [PubMed] [Google Scholar]
- 62. Baer GM, Woodall DF. Bat salivary gland virus carrier state in a naturally infected Mexican freetail bat. Am J Trop Med 1966; 15: 769–771. [DOI] [PubMed] [Google Scholar]
- 63. Price JL. Isolation of Rio Bravo and a hitherto undescribed agent, Tamana bat virus, from insectivorous bats in Trinidad, with serological evidence of infection in bats and man. Am J Trop Med Hyg 1978; 27: 153–161. [DOI] [PubMed] [Google Scholar]
- 64. Burke DS, Monath TP. Flaviviruses In Field's Virology (4th ed) Knipe DM, Howley PM. (eds). Lippincott Williams & Wilkins: Philadelphia, 2001; 1043–1125. [Google Scholar]
- 65. Tajima S, Takasaki T, Matsuno S, Nakayama M, Kurane I. Genetic characterization of Yokose virus, a flavivirus isolated from the bat in Japan. Virology 2005; 332: 38–44. [DOI] [PubMed] [Google Scholar]
- 66. Scott TW. Are bats really involved in dengue virus transmission? J Med Entomol 2001; 38: 771–772. [DOI] [PubMed] [Google Scholar]
- 67. Lvov DK, Easterday B, Hinshow W, Dandurov I, Arkhipov PN. Isolation of strains of the Hong Kong complex (H3N2) influenza virus from Nyctalus noctula bats in Kazakhstan. Vopr Virusol 1979; 4: 338–341. [PubMed] [Google Scholar]
- 68. Kelkar SD, Kadam SS, Banerjee K. Haemagglutination inhibition antibodies against influenza virus in bats. Indian J Med Res 1981; 74: 147–152. [PubMed] [Google Scholar]
- 69. Hollinger FB, Pavri KM. Bat parainfluenza virus. Immunological, chemical, and physical properties. Am J Trop Med Hyg 1971; 20: 131–138. [PubMed] [Google Scholar]
- 70. Pavri KM, Singh KR, Hollinger FB. Isolation of a new parainfluenza virus from a frugivorous bat, Rousettus leschenaulti, collected at Poona, India. Am J Trop Med Hyg 1971; 20: 125–130. [DOI] [PubMed] [Google Scholar]
- 71. Henderson GW, Laird C, Dermott E, Rima BK. Characterization of Mapuera virus: structure, proteins and nucleotide sequence of the gene encoding the nucleocapsid protein. J Gen Virol 1995; 76: 2509–2518. [DOI] [PubMed] [Google Scholar]
- 72. Selvey LA, Wells RM, McCormack JG, et al Infection of humans and horses by a newly described morbillivirus. Med J Aust 1995; 162: 642–645. [DOI] [PubMed] [Google Scholar]
- 73. O'Sullivan JD, Allworth AM, Paterson DL, et al Fatal encephalitis due to novel paramyxovirus transmitted from horses. Lancet 1997; 349: 93–95. [DOI] [PubMed] [Google Scholar]
- 74. Young PL, Halpin K, Selleck PW, et al Serologic evidence for the presence in Pteropus bats of a paramyxovirus related to equine morbillivirus. Emerg Infect Dis 1996; 2: 239–240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75. Halpin K, Young PL, Field HE, Mackenzie JS. Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. J Gen Virol 2000; 81: 1927–1932. [DOI] [PubMed] [Google Scholar]
- 76. Field H, Young P, Yob JM, Mills J, Hall L, Mackenzie J. The natural history of Hendra and Nipah viruses. Microbes Infect 2001; 3: 307–314. [DOI] [PubMed] [Google Scholar]
- 77. Barclay AJ, Paton DJ. Hendra (equine morbillivirus). Vet J 2000; 160: 169–176. [DOI] [PubMed] [Google Scholar]
- 78. Chua KB, Goh KJ, Wong KT, et al Fatal encephalitis due to Nipah virus among pig‐farmers in Malaysia. Lancet 1999; 354: 1257–1259. [DOI] [PubMed] [Google Scholar]
- 79. Goh KJ, Tan CT, Chew NK, et al Clinical features of Nipah virus encephalitis among pig farmers in Malaysia. N Engl J Med 2000; 342: 1229–1235. [DOI] [PubMed] [Google Scholar]
- 80. Parashar UD, Sunn LM, Ong F, et al Case‐control study of risk factors for human infection with a new zoonotic paramyxovirus, Nipah virus, during a 1998–1999 outbreak of severe encephalitis in Malaysia. J Infect Dis 2000; 181: 1755–1759. [DOI] [PubMed] [Google Scholar]
- 81. Paton NI, Leo YS, Zaki SR, et al Outbreak of Nipah‐virus infection among abattoir workers in Singapore. Lancet 1999; 354: 1253–1256. [DOI] [PubMed] [Google Scholar]
- 82. Chew MH, Arguin PM, Shay DK, et al Risk factors for Nipah virus infection among abattoir workers in Singapore. J Infect Dis 2000; 181: 1760–1763. [DOI] [PubMed] [Google Scholar]
- 83. Mounts AW, Kaur H, Parashar UD, et al A cohort study of health care workers to assess nosocomial transmissibility of Nipah virus, Malaysia, 1999. J Infect Dis 2001; 183: 810–813. [DOI] [PubMed] [Google Scholar]
- 84. Yob JM, Field H, Rashdi AM, et al Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. Emerg Infect Dis 2001; 7: 439–441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85. Chua KB, Koh CL, Hooi PS, et al Isolation of Nipah virus from Malaysian Island flying‐foxes. Microbes Infect 2002; 4: 145–151. [DOI] [PubMed] [Google Scholar]
- 86. Chua KB, Chua BH, Wang CW. Anthropogenic deforestation, El Niño and the emergence of Nipah virus in Malaysia. Malays J Pathol 2002; 24: 15–21. [PubMed] [Google Scholar]
- 87. Chua KB, Lam SK, Goh KJ, et al The presence of Nipah virus in respiratory secretions and urine of patients during an outbreak of Nipah virus encephalitis in Malaysia J Infect 2001; 42: 40–43. [DOI] [PubMed] [Google Scholar]
- 88. Harcourt BH, Lowe L, Tamin A, et al Genetic characterization of Nipah virus, Bangladesh, 2004. Emerg Infect Dis 2005; 11: 1594–1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89. Hsu VP, Hossain MJ, Parashar UD, et al Nipah virus encephalitis reemergence, Bangladesh. Emerg Infect Dis 2004; 10: 2082–2087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90. Chadha MS, Comer JA, Lowe L, et al Nipah virus‐associated encephalitis outbreak, Siliguri, India. Emerg Infect Dis 2006; 12: 235–240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91. Olson JG, Rupprecht C, Rollin PE, et al Antibodies to Nipah‐like virus in bats (Pteropus lylei), Cambodia. Emerg Infect Dis 2002; 8: 987–988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92. Reynes JM, Counor D, Ong S, et al Nipah virus in Lyle's flying foxes, Cambodia. Emerg Infect Dis 2005; 11: 1042–1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93. Wacharapluesadee S, Lumlertdacha B, Boongird K, et al Bat Nipah virus, Thailand. Emerg Infect Dis 2005; 11: 1949–1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94. Sendow I, Field HE, Curran J, et al Henipavirus in Pteropus vampyrus bats, Indonesia. Emerg Infect Dis 2006; 12: 711–712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95. Philbey AW, Kirkland PD, Ross AD, et al An apparently new virus (family Paramyxoviridae) infectious for pigs, humans, and fruit bats. Emerg Infect Dis 1998; 4: 269–271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96. Chant K, Chan R, Smith M, Dwyer DE, Kirkland P. Probable human infection with a newly described virus in the family Paramyxoviridae . Emerg Infect Dis 1998; 4: 273–275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97. Bowden TR, Boyle DB. Completion of the full‐length genome sequence of Menangle virus: characterization of the polymerase gene and genomic 5′ trailer region. Arch Virol 2005; 150: 2125–2137. [DOI] [PubMed] [Google Scholar]
- 98. Chua KB, Wang LF, Lam SK, et al Tioman virus, a novel paramyxovirus isolated from fruit bats in Malaysia. Virology 2001; 283: 215–229. [DOI] [PubMed] [Google Scholar]
- 99. Chua KB, Wang LF, Lam SK, Eaton BT. Full length genome sequence of Tioman virus, a novel paramyxovirus in the genus Rubulavirus isolated from fruit bats in Malaysia. Arch Virol 2002; 147: 1323–1348. [DOI] [PubMed] [Google Scholar]
- 100. Gard GP, Compans RW. Structure and cytopathic effects of Nelson Bay virus. J Virol 1970; 6: 100–106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101. Pritchard LI, Chua KB, Cummins D, et al Pulau virus: a new member of the Nelson Bay orthoreovirus species isolated from fruit bats in Malaysia. Arch Virol 2006; 151: 229–239. [DOI] [PubMed] [Google Scholar]
- 102. Baillie GJ, van de Lagemaat LN, Baust C, Mager DL. Multiple groups of endogenous betaretroviruses in mice, rats, and other mammals. J Virol 2004; 78: 5784–5798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103. Donaldson AI. Bats as possible maintenance hosts for vesicular stomatitis virus. Am J Epidemiol 1970; 92: 132–136. [DOI] [PubMed] [Google Scholar]
- 104. Rao BL, Basu A, Wairagkar NS, et al A large outbreak of acute encephalitis with high fatality rate in children in Andhra Pradesh, India, in 2003, associated with Chandipura virus. Lancet 2004; 364: 869–874. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105. Murphy FA, Shope RE, Metselaar D, Simpson DI. Characterization of Mount Elgon bat virus, a new member of the rhabdovirus group. Virology 1970; 40: 288–297. [DOI] [PubMed] [Google Scholar]
- 106. Arai YT, Kuzmin IV, Kameoka Y, Botvinkin AD. New lyssavirus genotype from the lesser mouse‐eared bat (Myotis blythi), Kyrghyzstan. Emerg Infect Dis 2003; 9: 333–337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107. Botvinkin AD, Poleschuk EM, Kuzmin IV, et al Novel lyssaviruses isolated from bats in Russia. Emerg Infect Dis 2003; 9: 1623–1625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108. Kuzmin IV, Orciari LA, Arai YT, et al Bat lyssaviruses (Aravan and Khujand) from Central Asia: phylogenetic relationships according to N, P and G gene sequences. Virus Res 2003; 97: 65–79. [DOI] [PubMed] [Google Scholar]
- 109. Markotter W, Randles J, Rupprecht CE, et al Lagos Bat Virus, South Africa. Emerg Infect Dis 2006; 12: 504–506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110. Meredith CD, Rossouw AP, Koch HP. An unusual case of human rabies thought to be of chiropteran origin. S Afr Med J 1971; 45: 767–769. [PubMed] [Google Scholar]
- 111. King AA, Meredith CD, Thomson GR. The biology of southern African lyssavirus variants. Curr Top Microbiol Immunol 1994; 187: 267–295. [DOI] [PubMed] [Google Scholar]
- 112. Badrane H, Bahloul C, Perrin P, Tordo N. Evidence of two Lyssavirus phylogroups with distinct pathogenicity and immunogenicity. J Virol 2001; 75: 3268–3276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 113. Kuzmin IV, Hughes GJ, Botvinkin AD, Orciari LA, Rupprecht CE. Phylogenetic relationships of Irkut and West Caucasian bat viruses within the Lyssavirus genus and suggested quantitative criteria based on the N gene sequence for lyssavirus genotype definition. Virus Res 2005; 111: 28–43. [DOI] [PubMed] [Google Scholar]
- 114. Badrane H, Tordo N. Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders. J Virol 2001; 75: 8096–8104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 115. Shankar V, Orciari LA, de Mattos C, et al Genetic divergence of rabies viruses from bat species of Colorado, USA. Vector Borne Zoonotic Dis 2005; 5: 330–341. [DOI] [PubMed] [Google Scholar]
- 116. Davis PL, Bourhy H, Holmes EC. The evolutionary history and dynamics of bat rabies virus. Infect Genet Evol 2006. (In press). [DOI] [PubMed] [Google Scholar]
- 117. Nadin‐Davis SA, Huang W, Armstrong J, et al Antigenic and genetic divergence of rabies viruses from bat species indigenous to Canada. Virus Res 2001; 74: 139–156. [DOI] [PubMed] [Google Scholar]
- 118. Messenger SL, Smith JS, Rupprecht CE. Emerging epidemiology of bat‐associated cryptic cases of rabies in humans in the United States. Clin Infect Dis 2002; 35: 738–747. [DOI] [PubMed] [Google Scholar]
- 119. Ito M, Arai YT, Itou T, et al Genetic characterization and geographic distribution of rabies virus isolates in Brazil: identification of two reservoirs, dogs and vampire bats. Virology 2001; 284: 214–222. [DOI] [PubMed] [Google Scholar]
- 120. Kobayashi Y, Sato G, Shoji Y, et al Molecular epidemiological analysis of bat rabies viruses in Brazil. J Vet Med Sci 2005; 67: 647–652. [DOI] [PubMed] [Google Scholar]
- 121. Cisterna D, Bonaventura R, Caillou S, et al Antigenic and molecular characterization of rabies virus in Argentina. Virus Res 2005; 109: 139–147. [DOI] [PubMed] [Google Scholar]
- 122. de Mattos CA, Favi M, Yung V, Pavletic C, de Mattos CC. Bat rabies in urban centers in Chile. J Wildl Dis 2000; 36: 231–240. [DOI] [PubMed] [Google Scholar]
- 123. Nadin‐Davis SA, Loza‐Rubio E. The molecular epidemiology of rabies associated with chiropteran hosts in Mexico. Virus Res 2006; 117: 215–226. [DOI] [PubMed] [Google Scholar]
- 124. Schowalter DB. Characteristics of bat rabies in Alberta. Can J Comp Med 1980; 44: 70–76. [PMC free article] [PubMed] [Google Scholar]
- 125. Pal SR, Arora B, Chhuttani PN, et al Rabies virus infection of a flying fox bat, Pteropus policephalus in Chandigarh, Northern India. Trop Geogr Med 1980; 32: 265–267. [PubMed] [Google Scholar]
- 126. Stantic‐Pavlinic M. Public health concerns in bat rabies across Europe. Euro Surveill 2005; 10: 217–220. [PubMed] [Google Scholar]
- 127. Müller T, Cox J, Peter W, et al Spill‐over of European bat lyssavirus type 1 into a stone marten (Martes foina) in Germany. J Vet Med B Infect Dis Vet Public Health 2004; 51: 49–54. [DOI] [PubMed] [Google Scholar]
- 128. Fooks AR, Brookes SM, Johnson N, McElhinney LM, Hutson AM. European bat lyssaviruses: an emerging zoonosis. Epidemiol Infect 2003; 131: 1029–1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 129. Bourhy H, Kissi B, Lafon M, Sacramento D, Tordo N. Antigenic and molecular characterization of bat rabies virus in Europe. J Clin Microbiol 1992; 30: 2419–2426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130. Serra‐Cobo J, Amengual B, Abellan C, Bourhy H. European bat lyssavirus infection in Spanish bat populations. Emerg Infect Dis 2002; 8: 413–420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 131. van der Poel WH, van der Heide R, Verstraten ER, et al European bat lyssaviruses, The Netherlands. Emerg Infect Dis 2005; 11: 1854–1859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132. Rønsholt L, Sørensen KJ, Bruschke CJM, et al Clinical silent rabies infection in (zoo) bats. Vet Rec 1998; 142: 519–520. [DOI] [PubMed] [Google Scholar]
- 133. Brookes SM, Aegerter JN, Smith GC, et al European bat lyssavirus in Scottish bats. Emerg Infect Dis 2005; 11: 572–578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134. Johnson N, Selden D, Parsons G, et al Isolation of a European bat lyssavirus type 2 from a Daubenton's bat in the United Kingdom. Vet Rec 2003; 152: 383–387. [DOI] [PubMed] [Google Scholar]
- 135. Fraser GC, Hooper PT, Lunt RA, et al Encephalitis caused by a Lyssavirus in fruit bats in Australia. Emerg Infect Dis 1996; 2: 327–331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 136. Allworth A, Murray K, Morgan J. A human case of encephalitis due to a lyssavirus recently identified in fruit bats. Commun Dis Intell 1996; 20: 504. [Google Scholar]
- 137. Mackenzie JS. Emerging viral diseases: an Australian perspective. Emerg Infect Dis 1999; 5: 1–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138. McCall BJ, Epstein JH, Neill AS, et al Potential exposure to Australian bat lyssavirus, Queensland, 1996–1999. Emerg Infect Dis 2000; 6: 259–264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 139. McCall BJ, Field HE, Smith GA, Storie GJ, Harrower BJ. Defining the risk of human exposure to Australian bat lyssavirus through potential non‐bat animal infection. Commun Dis Intell 2005; 29: 202–205. [PubMed] [Google Scholar]
- 140. Arguin PM, Murray‐Lillibridge K, Miranda ME, Smith JS, Calaor AB, Rupprecht CE. Serologic evidence of Lyssavirus infections among bats, the Philippines. Emerg Infect Dis 2002; 8: 258–262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 141. Reynes JM, Molia S, Audry L, et al Serologic evidence of lyssavirus infection in bats, Cambodia. Emerg Infect Dis 2004; 10: 2231–2234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142. Lumlertdacha B, Boongird K, Wanghongsa S, et al Survey for bat lyssaviruses, Thailand. Emerg Infect Dis 2005; 11: 232–236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143. Kuzmin IV, Niezgoda M, Carroll DS, et al Lyssavirus surveillance in bats, Bangladesh. Emerg Infect Dis 2005; 12: 486–488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 144. Hellenbrand W, Meyer C, Rasch G, Steffens I, Ammon A. E‐alert 18 February: cases of rabies in Germany following organ transplantation. Euro. Surveill. 10:E050224.6. http://www.eurosurveillance.org/ew/2005/050224.asp#6. [3 May, 2006.] [DOI] [PubMed]
- 145. Willoughby RE Jr., Tieves KS, Hoffman GM, et al Survival after treatment of rabies with induction of coma. N Engl J Med 2005; 352: 2508–2514. [DOI] [PubMed] [Google Scholar]
- 146. Brookes SM, Parsons G, Johnson N, McElhinney LM, Fooks AR. Rabies human diploid cell vaccine elicits cross‐neutralising and cross‐protecting immune responses against European and Australian bat lyssaviruses. Vaccine 2005; 23: 4101–4109. [DOI] [PubMed] [Google Scholar]
- 147. Hanlon CA, Kuzmin IV, Blanton JD, Weldon WC, Manangan JS, Rupprecht CE. Efficacy of rabies biologics against new lyssaviruses from Eurasia. Virus Res 2005; 111: 44–54. [DOI] [PubMed] [Google Scholar]
- 148. World Health Organization . Chikungunya and Dengue in the south west Indian Ocean. http://www.who.int/csr/don/2006_03_17/en/index.html. [20 April, 2006.]
- 149. Diallo M, Thonnon J, Traore‐Lamizana M, Fontenille D. Vectors of Chikungunya virus in Senegal: current data and transmission cycles. Am J Trop Med Hyg 1999; 60: 281–286. [DOI] [PubMed] [Google Scholar]
- 150. Ubico SR, McLean RG. Serologic survey of neotropical bats in Guatemala for virus antibodies. J Wildl Dis 1995; 31: 1–9. [DOI] [PubMed] [Google Scholar]
- 151. Weaver SC, Ferro C, Barrera R, Boshell J, Navarro JC. Venezuelan equine encephalitis. Annu Rev Entomol 2004; 49: 141–174. [DOI] [PubMed] [Google Scholar]
- 152. Seymour C, Dickerman RW, Martin MS. Venezuelan encephalitis virus infection in neotropical bats. I. Natural infection in a Guatemalan enzootic focus. Am J Trop Med Hyg 1978; 27: 290–296. [DOI] [PubMed] [Google Scholar]
- 153. Correa‐Giron P, Calisher CH, Baer GM. Epidemic strain of Venezuelan equine encephalomyelitis virus from a vampire bat captured in Oaxaca, Mexico, 1970. Science 1972; 175: 546–547. [DOI] [PubMed] [Google Scholar]
- 154. Calisher CH, Kinney RM, de Souza Lopes O, Trent DW, Monath TP, Francy DB. Identification of a new Venezuelan equine encephalitis virus from Brazil. Am J Trop Med Hyg 1982; 31: 1260–1272. [DOI] [PubMed] [Google Scholar]
- 155. Ryan PA, Martin L, Mackenzie JS, Kay BH. Investigation of gray‐headed flying foxes (Pteropus poliocephalus) (Megachiroptera: Pteropodidae) and mosquitoes in the ecology of Ross River virus in Australia. Am J Trop Med Hyg 1997; 57: 476–482. [DOI] [PubMed] [Google Scholar]
- 156. Almeida MF, Martorelli LF, Aires CC, Sallum PC, Massad E. Indirect oral immunization of captive vampires, Desmodus rotundus . Virus Res 2005; 111: 77–82. [DOI] [PubMed] [Google Scholar]
- 157. Sétien AA, Brochier B, Tordo N, et al Experimental rabies infection and oral vaccination in vampire bats (Desmodus rotundus). Vaccine 1998; 16: 1122–1126. [DOI] [PubMed] [Google Scholar]
- 158. Wanzeller AL, Diniz JA, Gomes ML, et al Ultrastructural, antigenic and physicochemical characterization of the Mojuí dos Campos (Bunyavirus) isolated from bat in the Brazilian Amazon region. Mem Inst Oswaldo Cruz 2002; 97: 307–311. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.