Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2010 Feb 1;20(3):156–176. doi: 10.1002/rmv.644

Newly identified human rhinoviruses: molecular methods heat up the cold viruses

Katherine E Arden 1,2, Ian M Mackay 1,2,
PMCID: PMC7169101  PMID: 20127751

Abstract

Human rhinovirus (HRV) infections cause at least 70% of virus‐related wheezing exacerbations and cold and flu‐like illnesses. They are associated with otitis media, sinusitis and pneumonia. Annually, the economic impact of HRV infections costs billions in healthcare and lost productivity. Since 1987, 100 officially recognised HRV serotypes reside in two genetically distinct species; HRV A and HRV B, within the genus Enterovirus, family Picornaviridae. Sequencing of their ∼7kb genomes was finalised in 2009. Since 1999, many globally circulating, molecularly‐defined ‘strains’, perhaps equivalent to novel serotypes, have been discovered but remain uncharacterised. Many of these currently unculturable strains have been assigned to a proposed new species, HRV C although confusion exists over the membership of the species. There has not been sufficient sampling to ensure the identification of all strains and no consensus criteria exist to define whether clinical HRV detections are best described as a distinct strain or a closely related variant of a previously identified strain (or serotype). We cannot yet robustly identify patterns in the circulation of newly identified HRVs (niHRVs) or the full range of associated illnesses and more data are required. Many questions arise from this new found diversity: what drives the development of so many distinct viruses compared to other species of RNA viruses? What role does recombination play in generating this diversity? Are there species‐ or strain‐specific circulation patterns and clinical outcomes? Are divergent strains sensitive to existing capsid‐binding antivirals? This update reviews the findings that trigger these and other questions arising during the current cycle of intense rhinovirus discovery. Copyright © 2010 John Wiley & Sons, Ltd.

REFERENCES

  • 1. McErlean P, Shackleton LA, Lambert SB, Nissen MD, Sloots TP, Mackay IM. Characterisation of a newly identified human rhinovirus, HRV‐QPM, discovered in infants with bronchiolitis. J Clin Virol 2007; 39: 67–75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Alper CM, Doyle WJ, Winther B, Hendley JO. Upper respiratory virus detection without parent‐reported illness in children is virus‐specific. J Clin Virol 2008; 43(1): 120–122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Andrewes CH, Chaproniere DM, Gompels AEH, Pereira HG, Roden AT. Propagation of common‐cold virus in tissue cultures. Lancet 1953; 265(6785): 546–547. [DOI] [PubMed] [Google Scholar]
  • 4. Andrewes CH. The taxonomic position of common cold viruses and some others. Yale J Biol Med 1961; 34: 200–206. [PMC free article] [PubMed] [Google Scholar]
  • 5. Kapikian AZ, Conant RM, Chanock RM, et al Rhinoviruses: a numbering system. Nature 1967; 213(78): 761–762. [DOI] [PubMed] [Google Scholar]
  • 6. ICTV HRV C proposal. http://talk.ictvonline.org/media/p/1201.aspx 30 August 2009.
  • 7. Arruda E, Boyle TR, Winther B, Pevear DC, Gwaltney JM, Jr. , Hayden FG. Localization of human rhinovirus replication in the upper respiratory tract by in situ hybridization. J Infect Dis 1995; 171(5): 1329–1333. [DOI] [PubMed] [Google Scholar]
  • 8. Jakiela B, Brockman‐Schneider R, Amineva S, Lee W‐M, Gern JE. Basal cells of differentiated bronchial epithelium are more susceptible to rhinovirus infection. Am J Respir Cell Mol Biol 2008; 38(5): 517–523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Chauhan AJ, Inskip HM, Linaker CH, et al Personal exposure to nitrogen dioxide (NO2) and the severity of virus‐induced asthma in children. Lancet 2003; 361(9373): 1939–1944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Johnston SL, Pattemore PK, Sanderson G, et al Community study of role of viral infections in exacerbations of asthma in 9‐11 year old children. Br Med J 1995; 310: 1225–1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Rakes GP, Arruda E, Ingram JM, et al Rhinovirus and respiratory syncytial virus in wheezing children requiring emergency care. Am J Resp Crit Care Med 1999; 159: 785–790. [DOI] [PubMed] [Google Scholar]
  • 12. Jartti T, Korppi M, Ruuskanen O. The clinical importance of rhinovirus‐associated early wheezing. Eur Respir J 2009; 33(3): 706–707. [DOI] [PubMed] [Google Scholar]
  • 13. Johnston SL. Overview of virus‐induced airway disease. Proc Am Thorac Soc 2005; 2(2): 150–156. [DOI] [PubMed] [Google Scholar]
  • 14. Ruohola A, Waris M, Allander T, Ziegler T, Heikkinen T, Ruuskanen O. Viral etiology of common cold in children, Finland. Emerg Infect Dis 2009; 15(2): 344–346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Linsuwanon P, Payungporn S, Samransamruajkit R, et al High prevalence of human rhinovirus C infection in Thai children with acute lower respiratory tract disease. J Infect 2009; 59(2): 115–121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Pattemore PK, Johnston SL, Bardin PG. Viruses as precipitants of asthma symptoms. I. epidemiology. Clin Exp Allergy 1992; 22: 325–336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. !Banham TM. A collaborative study of the aetiology of acute respiratory infections in Britain 1961‐4. A report of the medical research council working party on acute respiratory virus infections. Br Med J 1965; 2(5457): 319–326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Minor TE, Dick EC, DeMeo AN, Ouellette JJ, Cohen M, Reed CE. Viruses as precipitants of asthmatic attacks in children. JAMA 1974; 227(3): 292–298. [PubMed] [Google Scholar]
  • 19. Nicholson KG, Kent J, Ireland DC. Respiratory viruses and exacerbations of asthma in adults. Br Med J 1993; 307: 982–986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Asher MI, Montefort S, Bjorksten B, et al Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross‐sectional surveys. Lancet 2006; 368(9537): 733–743. [DOI] [PubMed] [Google Scholar]
  • 21. Murray CJL, Lopez AD. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 1997; 349: 1498–1504. [DOI] [PubMed] [Google Scholar]
  • 22. Garbino J, Soccal PM, Aubert JD, et al Respiratory viruses in bronchoalveolar lavage: a hospital‐based cohort study in adults. Thorax 2009; 64(5): 399–404. [DOI] [PubMed] [Google Scholar]
  • 23. Rotbart HA, Hayden FG. Picornavirus infections: a primer for the practitioner. Arch Fam Med 2000; 9: 913–920. [DOI] [PubMed] [Google Scholar]
  • 24. Abzug MJ, Beam AC, Gyorkos EA, Levin MJ. Viral pneumonia in the first month of life. Pediatr Infect Dis J 1990; 9(12): 881–885. [DOI] [PubMed] [Google Scholar]
  • 25. Arola M, Ziegler T, Puhakka H, Lehtonen OP, Ruuskanen O. Rhinovirus in otitis media with effusion. Ann Otol Rhinol Laryngol 1990; 99(6 Pt 1): 451–453. [DOI] [PubMed] [Google Scholar]
  • 26. Gwaltney JM, Jr. , Phillips CD, Miller RD, Riker DK. Computed tomographic study of the common cold. N Engl J Med 1994; 330(1): 25–30. [DOI] [PubMed] [Google Scholar]
  • 27. Winther B, Brofeldt S, Gronborg H, Mygind N. Pathology of naturally occurring colds. Eur J Respir Dis Suppl 1983; 128(Pt 1): 345–347. [PubMed] [Google Scholar]
  • 28. Dreschers S, Dumitru CA, Adams C, Gulbins E. The cold case: Are rhinoviruses perfectly adapted pathogens? Cell Mol Life Sci 2007; 64(2): 181–191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Hendley JO. The host response, not the virus, causes the symptoms of the common cold. Clin Infect Dis 1998; 26: 847–848. [DOI] [PubMed] [Google Scholar]
  • 30. Turner RB, Weingand KW, Yeh C‐H, Leedy DW. Association between interleukin‐8 concentration in nasal secretions and severity of experimental rhinovirus colds. Clin Infect Dis 1998; 26: 840–846. [DOI] [PubMed] [Google Scholar]
  • 31. Follin P, Lindqvist A, Nystrom K, Lindh M. A variety of respiratory viruses found in symptomatic travellers returning from countries with ongoing spread of the new influenza A(H1N1)v virus strain. Euro Surveill 2009; 14(24). pii=19242. [DOI] [PubMed] [Google Scholar]
  • 32. Schrag SJ, Brooks JT, Van BC, et al SARS surveillance during emergency public health response, United States, March‐July 2003. Emerg Infect Dis 2004; 10(2): 185–194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Fendrick AM, Monto AS, Nightengale B. The economic burden of non‐influenza‐related viral respiratory tract infection in the United States. Arch Intern Med 2003; 163: 487–494. [DOI] [PubMed] [Google Scholar]
  • 34. Bertino JS. Cost burden of viral respiratory infections: Issues for formulary decision makers. Am J Med 2002; 112(6A): 42S–49S. [DOI] [PubMed] [Google Scholar]
  • 35. Andrewes CH. The complex epidemiology of respiratory virus infections. Science 1964; 146(3649): 1274–1277. [DOI] [PubMed] [Google Scholar]
  • 36. Savolainen‐Kopra C, Blomqvist S, Kilpi T, Roivainen M, Hovi T. Novel species of human rhinoviruses in acute otitis media. Pediatr Infect Dis J 2009; 28(1): 59–61. [DOI] [PubMed] [Google Scholar]
  • 37. Piotrowska Z, Vázquez M, Shapiro ED, et al Rhinoviruses are a major cause of wheezing and hospitalization in children less than 2 years of age. Pediatr Infect Dis J 2009; 28(1): 25–29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Hamparian VV, Colonno RJ, Cooney MK, et al A collaborative report: Rhinoviruses ‐ extension of the numbering system from 89 to 100. Virology 1987; 159: 191–192. [DOI] [PubMed] [Google Scholar]
  • 39. Miller EK, Lu X, Erdman DD, et al Rhinovirus‐associated hospitalizations in young children. J Infect Dis 2007; 195: 773–781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Mori J, Clewley JP. Polymerase chain reaction and sequencing for typing rhinovirus RNA. J Med Virol 1994; 44: 323–329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Andeweg AC, Bestebroer TM, Huybreghs M, Kimman TG, de Jong JC. Improved detection of rhinoviruses in clinical samples by using a newly developed nested reverse transcription‐PCR assay. J Clin Microbiol 1999; 37(3): 524–530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Arden KE, McErlean P, Nissen MD, Sloots TP, Mackay IM. Frequent detection of human rhinoviruses, paramyxoviruses, coronaviruses, and bocavirus during acute respiratory tract infections. J Med Virol 2006; 78(9): 1232–1240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Lamson D, Renwick N, Kapoor V, et al MassTag Polymerase‐Chain‐Reaction Detection of Respiratory Pathogens, Including a New Rhinovirus Genotype, That Caused Influenza‐Like Illness in New York State during 2004–2005. J Infect Dis 2006; 194(10): 1398–1402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Jin Y, Yuan X‐H, Xie Z‐P, et al Prevalence and clinical characterization of a newly identified human rhinovirus C species in children with acute respiratory tract infection. J Clin Microbiol 2009; epub. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45. Huang T, Wang W, Bessaud M, et al Evidence of recombination and genetic diversity in human rhinoviruses in children with acute respiratory infection. PLoS One 2009; 4(7): e6355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Piralla A, Rovida F, Campanini G, et al Clinical severity and molecular typing of human rhinovirus C strains during a fall outbreak affecting hospitalized patients. J Clin Virol 2009; 45(4): 311–317. [DOI] [PubMed] [Google Scholar]
  • 47. Dominguez SR, Briese T, Palacios G, et al Multiplex MassTag‐PCR for respiratory pathogens in pediatric nasopharyngeal washes negative by conventional diagnostic testing shows a high prevalence of viruses belonging to a newly recognized rhinovirus clade. J Clin Virol 2008; 43(2): 219–222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Lau SKP, Yip CCY, Tsoi H‐W, et al Clinical features and complete genome characterization of a distinct human rhinovirus genetic cluster, probably representing a previously undetected HRV species, HRV‐C, associated with acute respiratory illness in children. J Clin Microbiol 2007; 45(11): 3655–3664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Miller EK, Edwards KM, Weinberg GA, et al A novel group of rhinoviruses is associated with asthma hospitalizations. J Allergy Clin Immunol 2009; 123(1): 98–104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Renwick N, Schweiger B, Kapoor V, et al A recently identified rhinovirus genotype is associated with severe respiratory‐tract infection in children in Germany. J Infect Dis 2007; 196: 1754–1760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. Briese T, Renwick N, Venter M, et al Global distribution of novel rhinovirus genotype. Emerg Infect Dis 2008; 14(6): 944–947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Loens K, Goossens H, de Laat C, et al Detection of rhinoviruses by tissue culture and two independent amplification techniques, nucleic acid sequence‐based amplification and reverse transcription‐PCR, in children with acute respiratory infections during a winter season. J Clin Microbiol 2006; 44(1): 166–171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Khetsuriani N, Lu X, Teague WG, Kazerouni N, Anderson LJ, Erdman DD. Novel human rhinoviruses and exacerbation of asthma in children. Emerg Infect Dis 2008; 14(11): 1793–1796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Miller EK, Khuri‐Bulos N, Williams JV, et al Human rhinovirus C associated with wheezing in hospitalised children in the Middle East. J Clin Virol 2009; 46(1): 85–89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Kistler A, Avila PC, Rouskin S, et al Pan‐viral screening of respiratory tract infections in adults with and without asthma reveals unexpected human coronavirus and human rhinovirus diversity. J Infect Dis 2007; 196: 817–825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Louie JK, Roy‐Burman A, Guardia‐Labar L, et al Rhinovirus associated with severe lower respiratory tract infections in children. Pediatr Infect Dis J 2009; 28(4): 337–339. [DOI] [PubMed] [Google Scholar]
  • 57. Lee W‐M, Kiesner C, Pappas T, et al A diverse group of previously unrecognized human rhinoviruses are common causes of respiratory illness in infants. PLoS One 2007; 2(10): e966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Han TH, Chung JY, Hwang ES, Koo JW. Detection of human rhinovirus C in children with acute lower respiratory tract infections in South Korea. Arch Virol 2009; 154(6): 987–991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59. Xiang Z, Gonzalez R, Xie Z, et al Human rhinovirus group C infection in children with lower respiratory tract infection. Emerg Infect Dis 2008; 14(10): 1665–1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Wisdom A, Leitch EC, Gaunt E, Harvala H, Simmonds P. Screening respiratory samples for detection of human rhinoviruses (HRVs) and enteroviruses: comprehensive VP4‐VP2 typing reveals high incidence and genetic diversity of HRV species C. J Clin Microbiol 2009; 47(12): 3958–3967 (Epub 14 October 2009). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61. Monto AS, Bryan ER, Ohmit S. Rhinovirus infections in Tecumseh, Michigan: Frequency of illness and number of serotypes. J Infect Dis 1987; 156(1): 43–49. [DOI] [PubMed] [Google Scholar]
  • 62. Woolhouse MEJ, Gowtage‐Sequeria S. Host range and emerging and reemerging pathogens. Emerg Infect Dis 2005; 11(12): 1842–1847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Savolainen C, Mulders MN, Hovi T. Phylogenetic analysis of rhinovirus isolates collected during successive epidemic seasons. Vir Res 2002; 85: 41–46. [DOI] [PubMed] [Google Scholar]
  • 64. van den Hoogen BG, Fouchier R, de Jong J, et al A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med 2001; 7(6): 719–724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. van der Hoek L, Pyrc K, Jebbink MF, et al Identification of a new human coronavirus. Nat Med 2004; 10(4): 368–373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66. Woo PCY, Lau SKP, Chu C‐M, et al Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol 2005; 79(2): 884–895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67. Allander T, Tammi MT, Eriksson M, Bjerkner A, Tiveljung‐Lindell A, Andersson B. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Nat Acad Sci 2005; 102(36): 12891–12896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68. Allander T, Andreasson K, Gupta S, et al Identification of a third human polyomavirus. J Virol 2007; 81: 4130–4136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. Gaynor AM, Nissen MD, Whiley DM, et al Identification of a Novel Human Polyomavirus from Patients with Acute Respiratory Tract Infections. PLos Pathog 2007; 3: e46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Ji W, Wang Y, Chen Z, Shao X, Ji Z, Xu J. Human metapneumovirus in children with acute respiratory tract infections in Suzhou, China 2005–2006. Scand J Infect Dis 2009; 14: 1–10. [DOI] [PubMed] [Google Scholar]
  • 71. Bharaj P, Sullender WM, Kabra SK, et al Respiratory viral infections detected by multiplex PCR among pediatric patients with lower respiratory tract infections seen at an urban hospital in Delhi from 2005 to 2007. Virol J 2009; 6: 89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72. Smuts H. Human coronavirus NL63 infections in infants hospitalised with acute respiratory tract infections in South Africa. Influenza Other Respi Viruses 2008; 2(4): 135–138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73. Mackay IM. Human rhinoviruses: The cold wars resume. J Clin Virol 2008; 42(4): 297–320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74. Gama RE, Hughes PJ, Bruce CB, Stanway G. Polymerase chain reaction amplification of rhinovirus nucleic acids from clinical material. Nucleic Acids Res 1988; 16(19): 9346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75. Claridge JK, Headey SJ, Chow JY, et al A picornaviral loop‐to‐loop replication complex. J Struct Biol 2009; 166(3): 251–262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76. Rohll JB, Percy N, Ley R, Evans DJ, Almond JW, Barclay WS. The 5′ ‐untranslated regions of picornavirus RNAs contain independent functional domains essential for RNA replication and translation. J Virol 1994; 68(7): 4384–4391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77. Johnston SL, Sanderson G, Pattemore PK, et al Use of polymerase chain reaction for diagnosis of picornavirus infection in subjects with and without respiratory symptoms. J Clin Microbiol 1993; 31(1): 111–117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78. Hamparian VV, Ketler A, Hilleman MR. Recovery of new viruses (Coryzavirus) from cases of common cold in human adults. Proc Soc Exp Biol Med 1961; 108: 444–453. [DOI] [PubMed] [Google Scholar]
  • 79. Lu X, Holloway B, Dare RK, et al Real‐time reverse transcription‐PCR assay for comprehensive detection of human rhinoviruses. J Clin Microbiol 2008; 46(2): 533–539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. Tapparel C, Cordey S, Van BS, et al New molecular detection tools adapted to emerging rhinoviruses and enteroviruses. J Clin Microbiol 2009; 47(6): 1742–1749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81. Vijgen L, Keyaerts E, Moës E, Maes P, Duson G, Van Ranst M. Development of one‐step, real‐time, quantitative reverse transcriptase PCR assays for absolute quantitation of human coronaviruses OC43 and 229E. J Clin Microbiol 2005; 43(11): 5452–5456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82. van der Hoek L, Sure K, Ihorst G, et al Croup is associated with the novel coronavirus NL63. PloS Medicine 2005; 2(8): e240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83. Kuypers J, Wright N, Ferrenberg J, et al Comparison of real‐time PCR assays with fluorescent‐antibody assays for diagnosis of respiratory virus infections in children. J Clin Microbiol 2006; 44(7): 2382–2388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84. Campanini G, Percivalle E, Baldanti F, et al Human respiratory syncytial virus (hRSV) RNA quantification in nasopharyngeal secretions identifies the hRSV etiologic role in acute respiratory tract infections of hospitalized infants. J Clin Virol 2007; 39(2): 119–124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85. Peltola V, Jartti T, Putto‐Laurila A, et al Rhinovirus infections in children: a retrospective and prospective hospital‐based study. J Med Virol 2009; 81(10): 1831–1838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86. Gama RE, Horsnell PR, Hughes PJ, et al Amplification of rhinovirus specific nucleic acids from clinical samples using the polymerase chain reaction. J Med Virol 1989; 28(2): 73–77. [DOI] [PubMed] [Google Scholar]
  • 87. Savolainen‐Kopra C, Blomqvist S, Smura T, et al 5′ noncoding region alone does not unequivocally determine genetic type of human rhinovirus strains. J Clin Microbiol 2009; 47(4): 1278–1280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88. Palmenberg AC, Spiro D, Kuzmickas R, et al Sequencing and Analyses of All Known Human Rhinovirus Genomes Reveals Structure and Evolution. Science 2009; 324(5923): 55–59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89. McErlean P, Shackleton LA, Andrewes E, et al Distinguishing molecular features and clinical characteristics of a putative new rhinovirus species, human rhinovirus C (HRV C). PLoS One 2008; 3(4): e1847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90. Kiang D, Kalra I, Yagi S, et al Assay for 5′ noncoding region analysis of all human rhinovirus prototype strains. J Clin Microbiol 2008; 46(11): 3736–3745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91. Tapparel C, Junier T, Germann D, et al New respiratory enterovirus and recombinant rhinoviruses among circulating strains. Emerg Infect Dis 2009; 15: (Epub ahead of print). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92. Simmonds P, Welch J. Frequency and dynamics of recombination within different species of human enteroviruses. J Virol 2006; 80(1): 483–493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93. Brooks GD, Buchta KA, Swenson CA, Gern JE, Busse WW. Rhinovirus‐induced interferon‐gamma and airway responsiveness in asthma. Am J Respir Crit Care Med 2003; 168(9): 1091–1094. [DOI] [PubMed] [Google Scholar]
  • 94. Tiveljung‐Lindell A, Rotzen‐Ostlund M, Gupta S, et al Development and implementation of a molecular diagnostic platform for daily rapid detection of 15 respiratory viruses. J Med Virol 2009; 81(1): 167–175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95. Stott EJ, Eadie MB, Grist NR. Rhinovirus infections of children in hospital; Isolation of three possibly new rhinovirus serotypes. Am J Epidemiol 1969; 90(1): 45–52. [DOI] [PubMed] [Google Scholar]
  • 96. van der Zalm MM, van Ewijk BE, Wilbrink B, Uiterwaal CSPM, Wolfs TFW, van der Ent CK. Respiratory pathogens in children with and without respiratory symptoms. J Pediatr 2008; 154(3): 396–400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97. Aberle JH, Aberle SW, Pracher E, Hutter H‐P, Kundi M, Popw‐Kraupp T. Single versus dual respiratory virus infections in hospitalized infants: impact on clinical course of disease and interferon‐gamma response. Pediatr Infect Dis J 2005; 24(7): 605–610. [DOI] [PubMed] [Google Scholar]
  • 98. Greensill J, McNamara PS, Dove W, Flanagan B, Smyth RL, Hart CA. Human metapneumovirus in severe respiratory syncytial virus bronchiolitis. Emerg Infect Dis 2003; 9(3): 372–375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99. Garcia‐Garcia ML, Calvo C, Perez‐Brena P, De Cea JM, Acosta B, Casas I. Prevalence and clinical characteristics of human metapneumovirus infections in hospitalized infants in Spain. Pediatr Pulmonol 2006; 41(9): 863–871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100. Simon A, Wilkesmann A, Muller A, Schildgen O. HMPV infections are frequently accompanied by co‐infections. Pediatr Pulmonol 2007; 42(1): 98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101. De VN, Vankeerberghen A, Vaeyens F, Van VK, Boel A, De BH. Simultaneous detection of human bocavirus and adenovirus by multiplex real‐time PCR in a Belgian paediatric population. Eur J Clin Microbiol Infect Dis 2009; 8(11): 1305–1310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102. Calvo C, Garcia ML, Pozo F, Reyes N, Perez‐Brena P, Casas I. Role of rhinovirus C in apparently life‐threatening events in infants, Spain. Emerg Infect Dis 2009; 15(9): 1506–1508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103. Linsuwanon P, Payungporn S, Samransamruajkit R, Theamboonlers A, Poovorawan Y. Recurrent human rhinovirus infections in infants with refractory wheezing. Emerg Infect Dis 2009; 15(6): 978–980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104. Greer RM, McErlean P, Arden KE, et al Do rhinoviruses reduce the probability of viral co‐detection during acute respiratory tract infections? J Clin Virol 2009; 45(1): 10–15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105. Kistler A, Webster DR, Rouskin S, et al Genome‐wide diversity and selective pressure in the human rhinovirus. Virol J 2007; 4: 40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106. Lewis‐Rogers N, Bendall ML, Crandall KA. Phylogenetic relationships and molecular adaptation dynamics of human rhinoviruses. Mol Biol Evol 2009; 26(5): 969–981. [DOI] [PubMed] [Google Scholar]
  • 107. Kapikian AZ, Conant RM, Hamparian VV, et al A collaborative report: rhinoviruses‐extension of the numbering system. Virology 1971; 43: 191–192. [DOI] [PubMed] [Google Scholar]
  • 108. Cooney MK, Kenny GE. Demonstration of dual rhinovirus infection in humans by isolation of different serotypes in human heteroploid (HeLa) and human diploid fibroblast cell cultures. J Clin Microbiol 1977; 5(2): 202–207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109. Blom N, Hansen J, Blaas D, Brunak S. Cleavage site analysis in picornaviral polyproteins: Discovering cellular targets by neural networks. Prot Sci 1996; 5: 2203–2216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110. Skern T, Sommergruber W, Blaas D, et al Human rhinovirus 2: Complete nucleotide sequence and proteolytic processing signals in the capsid protein region. Nucleic Acids Res 1985; 13(6): 2111–2126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111. Stanway G, Hughes PJ, Mountford RC, Minor PD, Almond JW. The complete nucleotide sequence of a common cold virus: human rhinovirus 14. Nucleic Acids Res 1984; 12(20): 7859–7877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112. Savolainen C, Laine P, Mulders MN, Hovi T. Sequence analysis of human rhinoviruses in the RNA‐dependent RNA polymerase coding region reveals within‐species variation. J Gen Virol 2004; 85(8): 2271–2277. [DOI] [PubMed] [Google Scholar]
  • 113. Brown B, Oberste MS, Maher K, Pallansch MA. Complete genomic sequencing shows that polioviruses and members of human enterovirus species C are closely related in the noncapsid coding region. J Virol 2003; 77: 8973–8984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114. Laine P, Blomqvist S, Savolainen C, Andries K, Hovi T. Alignment of capsid protein VP1 sequences of all human rhinovirus prototype strains: conserved motifs and functional domains. J Gen Virol 2006; 87(1): 129–138. [DOI] [PubMed] [Google Scholar]
  • 115. Blomqvist S, Savolainen‐Kopra C, Paananen A, Hovi T, Roivainen M. Molecular characterization of human rhinovirus field strains isolated during surveillance of enteroviruses. J Gen Virol 2009; 90(Pt 6): 1371–1381. [DOI] [PubMed] [Google Scholar]
  • 116. Verdaguer N, Fita I, Reithmayer M, Moser R, Blaas D. X‐ray structure of a minor group human rhinovirus bound to a fragment of its cellular receptor protein. Nat Struct Mol Biol 2004; 11(5): 429–434. [DOI] [PubMed] [Google Scholar]
  • 117. Verdaguer N, Blaas D, Fita I. Structure of human rhinovirus serotype 2 (HRV2). J Mol Biol 2000; 300: 1179–1194. [DOI] [PubMed] [Google Scholar]
  • 118. Cordey S, Gerlach D, Junier T, Zdobnov EM, Kaiser L, Tapparel C. The cis‐acting replication elements define human enterovirus and rhinovirus species. RNA 2008; 14(8): 1568–1578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119. Ledford RM, Patel NR, Demenczuk TM, et al VP1 sequencing of all human rhinovirus serotypes: Insights into genus phylogeny and susceptibility to antiviral capsid‐binding compounds. J Virol 2004; 78(7): 3663–3674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120. Tapparel C, L'Huillier AG, Rougemont AL, Beghetti M, Barazzone‐Argiroffo C, Kaiser L. Pneumonia and pericarditis in a child with HRV‐C infection: a case report. J Clin Virol 2009; 45(2): 157–160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121. Kneider M, Bergstrom T, Gustafsson C, et al Sequence analysis of human rhinovirus aspirated from the nasopharynx of patients with relapsing‐remitting MS. Mult Scler 2009; 15(4): 437–442. [DOI] [PubMed] [Google Scholar]
  • 122. van Elden LJ, Sachs AP, van Loon AM, et al Enhanced severity of virus associated lower respiratory tract disease in asthma patients may not be associated with delayed viral clearance and increased viral load in the upper respiratory tract. J Clin Virol 2008; 41(2): 116–121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123. Urquhart GED, Grist NR. Virological studies of sudden, unexplained infant deaths in Glasgow 1967–1970. J Clin Pathol 1972; 25: 443–446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124. Urquhart GED, Stott EJ. Rhinoviraemia. Br Med J 1970; 4: 28–30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125. Xatzipsalti M, Kyrana S, Tsolia M, et al Rhinovirus viremia in children with respiratory infections. Am J Resp Crit Care Med 2005; 172: 1037–1040. [DOI] [PubMed] [Google Scholar]
  • 126. Cate TR, Couch RB, Johnson KM. Studies with rhinoviruses in volunteers: production of illness, effect of naturally acquired antibody, and demonstration of a protective effect not associated with serum antibody. J Clin Investig 1964; 43: 56–67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127. Smith A, Thomas M, Kent J, Nicholson K. Effects of the common cold on mood and performance. Psychoneuroendocrinology 1998; 23(7): 733–739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128. Jartti T, Lehtinen P, Vuorinen P, Koskenvuo M, Ruuskanen O. Persistence of rhinovirus and enterovirus RNA after acute respiratory illness in children. J Med Virol 2004; 72(4): 695–699. [DOI] [PubMed] [Google Scholar]
  • 129. Winther B, Hayden FG, Hendley JO. Picornavirus infections in children diagnosed by RT‐PCR during longitudinal surveillance with weekly sampling: association with symptomatic illness and effect of season. J Med Virol 2006; 78: 644–650. [DOI] [PubMed] [Google Scholar]
  • 130. Rosenbaum MJ, De Berry P, Sullivan EJ, Pierce WE, Mueller RE, Peckinpaugh RO. Epidemiology of the common cold in military recruits with emphasis on infections by rhinovirus types 1A, 2, and two unclassified rhinoviruses. Am J Epidemiol 1971; 93(3): 183–193. [DOI] [PubMed] [Google Scholar]
  • 131. Jartti T, Lehtinen P, Vuorinen T, Koskenvuo M, Ruuskanen O. Persistence of rhinovirus and enterovirus RNA after acute respiratory illness in children. J Med Virol 2004; 72(4): 695–699. [DOI] [PubMed] [Google Scholar]
  • 132. Pitkäranta A, Roivainen M, Blomgren K, et al Presence of viral and bacterial pathogens in the nasopharynx of otitis‐prone children. A prospective study. Int J Pediatr Otorhinolaryngol 2005; 70(4): 647–654. [DOI] [PubMed] [Google Scholar]
  • 133. Peltola V, Waris M, Österback R, Susi P, Ruuskanen O, Hyypiä T. Rhinovirus transmission within families with children: incidence of symptomatic and asymptomatic infections. J Infect Dis 2008; 197: 382–389. [DOI] [PubMed] [Google Scholar]
  • 134. Gern JE, Vrtis R, Grindle KA, Swenson C, Busse WW. Relationship of upper and lower airway cytokines to outcome of experimental rhinovirus infection. Am J Resp Crit Care Med 2000; 162: 2226–2231. [DOI] [PubMed] [Google Scholar]
  • 135. Dick EC, Blumer CR, Evans AS. Epidemiology of infections with rhinovirus types 43 and 55 in a group of university of Wisconsin student families. Am J Epidemiol 1967; 86(2): 386–400. [DOI] [PubMed] [Google Scholar]
  • 136. Arden KE, Mackay IM. Human rhinoviruses: coming in from the cold. Genome Med 2009; 1(4): 44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137. Kling S, Donninger H, Williams Z, et al Persistence of rhinovirus RNA after asthma exacerbation in children. Clin Exp Allergy 2005; 35(5): 672–678. [DOI] [PubMed] [Google Scholar]
  • 138. Suvilehto J, Roivainen M, Seppänen M, et al Rhinovirus/enterovirus RNA in tonsillar tissue of children with tonsillar disease. J Clin Virol 2006; 35(3): 292–297. [DOI] [PubMed] [Google Scholar]
  • 139. Sato M, Li H, Ikizler MR, et al Detection of viruses in human adenoid tissues by use of multiplex PCR. J Clin Microbiol 2009; 47(3): 771–773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140. Wright PF, Deatly AM, Karron RA, et al Comparison of results of detection of rhinovirus by PCR and viral culture in human nasal wash specimens from subjects with and without clinical symptoms of respiratory illness. J Clin Microbiol 2007; 45(7): 2126–2129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141. Kaiser L, Aubert J‐D, Pache J‐C, et al Chronic rhinoviral infection in lung transplant recipients. Am J Resp Crit Care Med 2006; 174(12): 1392–1399. [DOI] [PubMed] [Google Scholar]
  • 142. Gwaltney Jr JM, Hendley JO, Simon G, Jordan Jr WS. Rhinovirus infections in an industrial population I. The occurrence of illness. N Engl J Med 1966; 275(23): 1261–1268. [DOI] [PubMed] [Google Scholar]
  • 143. Hamre D, Connelly AP, Procknow JJ. Virologic studies of acute respiratory disease in young adults. IV Virus isolations during four years of surveillance. Am J Epidemiol 1966; 83(2): 238–249. [DOI] [PubMed] [Google Scholar]
  • 144. Monto AS. Epidemiology of viral respiratory infections. Am J Med 2002; 112(Suppl 6A): 4S–12S. [DOI] [PubMed] [Google Scholar]
  • 145. Taylor‐Robinson D, Tyrrell DAJ. Serotypes of viruses (rhinoviruses) isolated from common colds. Lancet 1962; 1(7227): 452–454. [DOI] [PubMed] [Google Scholar]
  • 146. Abraham G, Colonno RJ. Many rhinovirus serotypes share the same cellular receptor. J Virol 1984; 51(2): 340–345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147. Colonno RJ, Callahan PL, Long WJ. Isolation of a monoclonal antibody that blocks attachment of the major group of human rhinoviruses. J Virol 1986; 57(1): 7–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148. Andries K, Dewindt B, Snoeks J, et al Two groups of rhinoviruses revealed by a panel of antiviral compounds present sequence divergence and differential pathogenicity. J Virol 1990; 64(3): 1117–1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149. Laine P, Savolainen C, Blomqvist S, Hovi T. Phylogenetic analysis of human rhinovirus capsid protein VP1 and 2A protease coding sequences confirms shared genus‐like relationships with human enteroviruses. J Gen Virol 2005; 86(3): 697–706. [DOI] [PubMed] [Google Scholar]
  • 150. Ishiko H, Miura R, Shimada Y, et al Human rhinovirus 87 identified as human enterovirus 68 by VP4‐based molecular diagnosis. Intervirology 2002; 45: 136–141. [DOI] [PubMed] [Google Scholar]
  • 151. Lau SKP, Yip CCY, Que T‐L, et al Clinical and molecular epidemiology of human bocavirus in respiratory and fecal samples from children in Hong Kong. J Infect Dis 2007; 196: 986–993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152. Schweiger B, Zadow I, Heckler R, Timm H, Pauli G. Application of a fluorogenic PCR assay for typing and subtyping influenza viruses in respiratory samples. J Clin Microbiol 2000; 38(4): 1552–1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153. Bellau‐Pujol S, Vabret A, Legrand L, et al Development of three multiplex RT‐PCR assays for the detection of 12 respiratory RNA viruses. J Virol Methods 2005; 126: 53–63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154. Briese T, Palacios G, Kokoris M, et al Diagnostic system for rapid and sensitive differential detection of pathogens. Emerg Infect Dis 2005; 11(2): 310–313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155. Coiras MT, Pérez‐Breña P, García ML, Casas I. Simultaneous detection of influenza A, B and C viruses, respiratory syncytial virus, and adenoviruses in clinical samples by multiplex reverse transcriptase nested‐PCR assay. J Med Virol 2003; 69: 132–144. [DOI] [PubMed] [Google Scholar]
  • 156. Loens K, Ieven M, Ursi D, et al Improved detection of rhinoviruses by nucleic acid sequence‐based amplification after nucleotide sequence determination of the 5′ noncoding regions of additional rhinovirus strains. J Clin Microbiol 2003; 41(5): 1971–1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157. Roghmann M, Ball K, Erdman D, Lovchik J, Anderson LJ, Edelman R. Active surveillance for respiratory virus infections in adults who have undergone bone marrow and peripheral blood stem cell transplantation. Bone Marrow Transplant 2003; 32(11): 1085–1088. [DOI] [PubMed] [Google Scholar]
  • 158. Blomqvist S, Skyttä A, Roivainen M, Hovi T. Rapid detection of human rhinoviruses in nasopharyngeal aspirates by a microwell reverse transcription‐PCR‐hybridization assay. J Clin Microbiol 1999; 37(9): 2813–2816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159. Kneider M, Bergstrom T, Gustafsson C, et al Sequence analysis of human rhinovirus aspirated from the nasopharynx of patients with relapsing‐remitting MS. Mult Scler 2009; 15(4): 437–442. [DOI] [PubMed] [Google Scholar]
  • 160. Wang D, Coscoy L, Zylberberg M, et al Microarray‐based detection and genotyping of viral pathogens. Proc Natl Acad Sci USA 2002; 99(24): 15687–15692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161. Kares S, Lönnrot M, Vuorinen P, Oikarinen S, Taurianen S, Hyöty H. Real‐time PCR for rapid diagnosis of entero‐ and rhinovirus infections using LightCycler. Journal of Clinical Virology 2004; 29: 99–104. [DOI] [PubMed] [Google Scholar]
  • 162. Lee W‐M, Grindle K, Pappas T, et al High‐throughput, sensitive, and accurate multiplex PCR‐microsphere flow cytometry system for large‐scale comprehensive detection of respiratory viruses. J Clin Microbiol 2008; 45(8): 2626–2634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163. Arola A, Santti J, Ruuskanen O, Halonen P, Hyypiä T. Identification of enteroviruses in clinical specimens by competitive PCR followed by genetic typing using sequence analysis. J Clin Microbiol 1996; 34(2): 313–318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164. Tan B‐H, Loo L‐H, Lim EA‐S, et al Human rhinovirus group C in hospitalized children, Singapore. Emerg Infect Dis 2009; 15(8): 1318–1320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165. Mackay IM, Arden KE, Nissen MD, Sloots TP. Challenges facing real‐time PCR characterization of acute respiratory tract infections In Real‐Time PCR in Microbiology: From Diagnosis to Characterization, Norfolk: Caister Academic Press, 2007; 269–318. [Google Scholar]

Articles from Reviews in Medical Virology are provided here courtesy of Wiley

RESOURCES