Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2003 Feb 28;13(2):123–132. doi: 10.1002/rmv.379

Structural evidence for common functions and ancestry of the reovirus and adenovirus attachment proteins

Thilo Stehle 1,, Terence S Dermody 2,
PMCID: PMC7169122  PMID: 12627395

Abstract

The crystal structure of the reovirus attachment protein, σ1, reveals a fibre‐like structure that is remarkably similar to that of the adenovirus attachment protein, fibre. Both proteins are trimers with head‐and‐tail morphology. They share unique domain structures and functional properties including defined regions of flexibility within the tail and an unusual symmetry mismatch with the pentameric viral capsid protein into which they are inserted. Moreover, the receptors for reoviruses and adenoviruses, junctional adhesion molecule 1 and coxsackievirus and adenovirus receptor, respectively, also share key structural and functional properties. Although reoviruses and adenoviruses belong to different virus families and have few properties in common, the observed similarities between σ1 and fibre point to a conserved mechanism of attachment and an ancient evolutionary relationship. Copyright © 2003 John Wiley & Sons, Ltd.

Contributor Information

Thilo Stehle, Email: tstehle@partners.org.

Terence S. Dermody, Email: terry.dermody@vanderbilt.edu.

REFERENCES

  • 1. Weissenhorn W, Dessen A, Calder LJ, Harrison SC, Skehel JJ, Wiley DC. Structural basis for membrane fusion by enveloped viruses. Mol Membr Biol 1999; 16: 3–9. [DOI] [PubMed] [Google Scholar]
  • 2. Chappell JD, Prota AE, Dermody TS, Stehle T. Crystal structure of reovirus attachment protein sigma 1 reveals evolutionary relationship to adenovirus fiber. EMBO J 2002; 21: 1–11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. van Raaij MJ, Mitraki A, Lavigne G, Cusack S. A triple β‐spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein. Nature 1999; 401: 935–938. [DOI] [PubMed] [Google Scholar]
  • 4. Nibert ML, Schiff LA. Reoviruses and their replication In Fields Virology, 4th edn, Knipe DM, Howley PM. (eds). Lippincott‐Raven: Philadelphia, 2001; 1679–1728. [Google Scholar]
  • 5. Liemann S, Chandran K, Baker TS, Nibert ML, Harrison SC. Structure of the reovirus membrane‐penetration protein, Mu1, in a complex with is protector protein, Sigma 3. Cell 2002; 108: 283–295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Furlong DB, Nibert ML, Fields BN. Sigma 1 protein of mammalian reoviruses extends from the surfaces of viral particles. J Virol 1988; 62: 246–256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Fraser RD, Furlong DB, Trus BL, Nibert ML, Fields BN, Steven AC. Molecular structure of the cell‐attachment protein of reovirus: correlation of computer‐processed electron micrographs with sequence‐ based predictions. J Virol 1990; 64: 2990–3000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Chappell JD, Duong JL, Wright BW, Dermody TS. Identification of carbohydrate‐binding domains in the attachment proteins of type 1 and type 3 reoviruses. J Virol 2000; 74: 8472–8479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Barton ES, Forrest JC, Connolly JL, et al Junction adhesion molecule is a receptor for reovirus. Cell 2001; 104: 441–451. [DOI] [PubMed] [Google Scholar]
  • 10. Dryden KA, Wang G, Yeager M, et al Early steps in reovirus infection are associated with dramatic changes in supramolecular structure and protein conformation: analysis of virions and subviral particles by cryoelectron microscopy and image reconstruction. J Cell Biol 1993; 122: 1023–1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Reinisch KM, Nibert ML, Harrison SC. Structure of the reovirus core at 3.6 Å resolution. Nature 2000; 404: 960–967. [DOI] [PubMed] [Google Scholar]
  • 12. Olland AM, Jane‐Valbuena J, Schiff LA, Nibert ML, Harrison SC. Structure of the reovirus outer capsid and dsRNA‐binding protein sigma 3 at 1.8 Å resolution. EMBO J 2001; 20: 979–989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Barton ES, Connolly JL, Forrest JC, Chappell JD, Dermody TS. Utilization of sialic acid as a coreceptor enhances reovirus attachment by multistep adhesion strengthening. J Biol Chem 2001; 276: 2200–2211. [DOI] [PubMed] [Google Scholar]
  • 14. Gentsch JR, Pacitti AF. Effect of neuraminidase treatment of cells and effect of soluble glycoproteins on type 3 reovirus attachment to murine L cells. J Virol 1985; 56: 356–364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Paul RW, Choi AH, Lee PW. The alpha‐anomeric form of sialic acid is the minimal receptor determinant recognized by reovirus. Virology 1989; 172: 382–385. [DOI] [PubMed] [Google Scholar]
  • 16. Dermody TS, Nibert ML, Bassel‐Duby R, Fields BN. A sigma 1 region important for hemagglutination by serotype 3 reovirus strains. J Virol 1990; 64: 5173–5176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Chappell JD, Gunn VL, Wetzel JD, Baer GS, Dermody TS. Mutations in type 3 reovirus that determine binding to sialic acid are contained in the fibrous tail domain of viral attachment protein sigma 1. J Virol 1997; 71: 1834–1841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Weiner HL, Drayna D, Averill DR, Jr , Fields BN. Molecular basis of reovirus virulence: role of the S1 gene. Proc Natl Acad Sci 1977; 74: 5744–5748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Weiner HL, Powers ML, Fields BN. Absolute linkage of virulence and central nervous system cell tropism of reoviruses to viral hemagglutinin. J Infect Dis 1980; 141: 609–616. [DOI] [PubMed] [Google Scholar]
  • 20. Tyler KL, Squier MK, Rodgers SE, et al Differences in the capacity of reovirus strains to induce apoptosis are determined by the viral attachment protein sigma 1. J Virol 1995; 69: 6972–6979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Rodgers SE, Barton ES, Oberhaus SM, et al Reovirus‐induced apoptosis of MDCK cells is not linked to viral yield and is blocked by Bcl‐2. J Virol 1997; 71: 2540–2546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Connolly JL, Rodgers SE, Clarke P, et al Reovirus‐induced apoptosis requires activation of transcription factor NF‐kappaB. J Virol 2000; 74: 2981–2989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Horvitz MS. Adenoviruses In Fields Virology, 4th edn, Knipe DM, Howley PM. (eds). Lippincott‐Raven: Philadelphia, 2001; 2301–2326. [Google Scholar]
  • 24. Shenk TE. Adenoviridae In Fields Virology, 4th edn, Knipe DM, Howley PM. (eds). Lippincott‐Raven: Philadelphia, 2001; 2265–2300. [Google Scholar]
  • 25. Bergelson JM, Cunningham JA, Droguett G, et al Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323. [DOI] [PubMed] [Google Scholar]
  • 26. Carson SD. Receptor for the group B coxsackieviruses and adenoviruses: CAR. Rev Med Virol 2001; 11: 219–226. [DOI] [PubMed] [Google Scholar]
  • 27. Louis N, Fender P, Barge A, Kitts P, Chroboczek J. Cell‐binding domain of adenovirus serotype 2 fiber. J Virol 1994; 68: 4104–4106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Henry LJ, Xia D, Wilke ME, Deisenhofer J, Gerard RD. Characterization of the knob domain of the adenovirus type 5 fibre protein expressed in Escherichia coli . J Virol 1994; 68: 5239–5246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Freimuth P, Springer K, Berard C, Hainfeld J, Bewley M, Flanagan J. Coxsackievirus and adenovirus receptor amino‐terminal immunoglobulin V‐related domain binds adenovirus type 2 and fibre knob from adenovirus type 12. J Virol 1999; 73: 1392–1398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. van Raaij MJ, Louis N, Chroboczek J, Cusack S. Structure of the human adenovirus serotype 2 fiber head domain at 1.5 Å resolution. Virology 1999; 262: 333–343. [DOI] [PubMed] [Google Scholar]
  • 31. Xia D, Henry LJ, Gerard RD, Deisenhofer J. Crystal structure of the receptor‐binding domain of adenovirus type 5 fibre protein at 1.7 A resolution. Structure 1994; 2: 1259–1270. [DOI] [PubMed] [Google Scholar]
  • 32. Durmort C, Stehlin C, Schoehn G, et al Structure of the fiber head of Ad3, a non‐CAR‐binding serotype of adenovirus. Virology 2001; 285: 302–312. [DOI] [PubMed] [Google Scholar]
  • 33. Bewley MC, Springer K, Zhang YB, Freimuth P, Flanagan JM. Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 1999; 286: 1579–1583. [DOI] [PubMed] [Google Scholar]
  • 34. Burkhard P, Stetefeld J, Strelkov SV. Coiled coils: a highly versatile protein folding motif. Trends Cell Biol 2001; 11: 82–88. [DOI] [PubMed] [Google Scholar]
  • 35. van Raaij MJ, Schoehn G, Burda MR, Miller S. Crystal structure of a heat and protease‐stable part of the bacteriophage T4 short tail fibre. J Mol Biol 2001; 314: 1137–1146. [DOI] [PubMed] [Google Scholar]
  • 36. Kanamaru S, Leiman PG, Kostyuchenko VA, et al Structure of the cell‐puncturing device of bacteriophage T4. Nature 2002; 415: 553–557. [DOI] [PubMed] [Google Scholar]
  • 37. Bork P, Holm L, Sander C. The immunoglobulin fold. Structural classification, sequence patterns and common core. J Mol Biol 1994; 242: 309–320. [DOI] [PubMed] [Google Scholar]
  • 38. Pautsch A, Schulz GE. Structure of the outer membrane protein A transmembrane domain. Nat Struct Biol 1998; 5: 1013–1017. [DOI] [PubMed] [Google Scholar]
  • 39. Harrison SC. The familiar and the unexpected in structures of icosahedral viruses. Curr Op Struct Biol 2001; 11: 195–199. [DOI] [PubMed] [Google Scholar]
  • 40. Holm L, Sander C. Protein structure comparison by alignment of distance matrices. J Mol Biol 1993; 233: 123–138. [DOI] [PubMed] [Google Scholar]
  • 41. Ruigrok RW, Barge A, Albiges‐Rizo C, Dayan S. Structure of adenovirus fibre. II. Morphology of single fibres. J Mol Biol 1990; 215: 589–596. [DOI] [PubMed] [Google Scholar]
  • 42. Ruigrok RW, Barge A, Mittal SK, Jacrot B. The fibre of bovine adenovirus type 3 is very long but bent. J Gen Virol 1994; 75: 2069–2073. [DOI] [PubMed] [Google Scholar]
  • 43. Chiu CY, Wu E, Brown SL, Von Seggern DJ, Nemerow GR, Stewart PL. Structural analysis of a fiber‐pseudotyped adenovirus with ocular tropism suggests differential modes of cell receptor interactions. J Virol 2001; 75: 5375–5380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Fan E, Merritt EA, Verlinde CL, Hol WG. AB(5) toxins: structures and inhibitor design. Curr Op Struct Biol 2000; 10: 680–686. [DOI] [PubMed] [Google Scholar]
  • 45. Abrahams JP, Leslie AG, Lutter R, Walker JE. Structure at 2.8 A resolution of F1‐ATPase from bovine heart mitochondria. Nature 1994; 370: 621–628. [DOI] [PubMed] [Google Scholar]
  • 46. Chen XC, Stehle T, Harrison SC. Interaction of polyomavirus internal protein VP2 with the major capsid protein VP1 and implications for participation of VP2 in viral entry. EMBO J 1998; 12: 3233–3240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Capaldi RA, Aggeler R. Mechanism of the F1F0‐type ATP synthase, a biological rotary motor. Trends Biochem Sci 2002; 27: 154–160. [DOI] [PubMed] [Google Scholar]
  • 48. van Raaij MJ, Chouin E, van der Zandt H, Bergelson JM, Cusack S. Dimeric structure of the coxsackievirus and adenovirus receptor D1 domain at 1.7 A resolution. Structure 2000; 8: 1147–1155. [DOI] [PubMed] [Google Scholar]
  • 49. Kostrewa D, Brockhaus M, D'Arcy A, et al X‐ray structure of junctional adhesion molecule: structural basis for homophilic adhesion via a novel dimerization motif. EMBO J 2001; 20: 4391–4398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Ostrov DA, Shi W, Schwartz JC, Almo SC, Nathenson SG. Structure of murine CTLA‐4 and its role in modulating T cell responsiveness. Science 2000; 290: 816–819. [DOI] [PubMed] [Google Scholar]
  • 51. Kasper C, Rasmussen H, Kastrup JS, et al Structural basis of cell–cell adhesion by NCAM. Nat Struct Biol 2000; 7: 389–393. [DOI] [PubMed] [Google Scholar]
  • 52. Casasnovas JM, Stehle T, Liu J, Wang J, Springer T. A dimeric crystal structure for the N‐terminal two domains of intercellular adhesion molecule‐1. Proc Natl Acad Sci 1998; 95: 4134–4139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Wu H, Kwong PD, Hendrickson WA. Dimeric association and segmental variability in the structure of human CD4. Nature 1997; 387: 527–530. [DOI] [PubMed] [Google Scholar]
  • 54. Tan K, Zelus BD, Meijers R, et al Crystal structure of murine sCEACAM1a[1,4]: a coronavirus receptor in the CEA family. EMBO J 2002; 21: 2076–2086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing antibody. Nature 1998; 393: 648–659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Bella J, Kolatkar PR, Marlor CW, Greve JM, Rossmann MG. The structure of the two amino‐terminal domains of human ICAM‐1 suggests how it functions as a rhinovirus receptor and as an LFA‐1 integrin ligand. Proc Natl Acad Sci 1998; 95: 4140–4145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Xiao C, Bator CM, Bowman VD, et al Interaction of coxsackievirus A21 with its cellular receptor, ICAM‐1. J Virol 2001; 75: 2444–2451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Lescar J, Roussel A, Wien MW, et al The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 2001; 105: 137–148. [DOI] [PubMed] [Google Scholar]
  • 59. Pletnev SV, Zhang W, Mukhopadhyay S, et al Locations of carbohydrate sites on alphavirus glycoproteins show that E1 forms an icosahedral scaffold. Cell 2001; 105: 127–136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC. The envelope glycoprotein from tick‐borne encephalitis virus at 2 A resolution. Nature 1995; 375: 291–298. [DOI] [PubMed] [Google Scholar]
  • 61. Benson SD, Bamford JK, Bamford DH, Burnett RM. Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell 1999; 98: 825–833. [DOI] [PubMed] [Google Scholar]
  • 62. Casasnovas JM, Larvie M, Stehle T. Crystal structure of two CD46 domains reveals an extended measles virus‐binding surface. EMBO J 1999; 18: 2911–2922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Prota AE, Sage DR, Stehle T, Fingeroth JD. The crystal structure of human CD21: implications for Epstein‐Barr virus and C3d binding. Proc Natl Acad Sci 2002; 99: 10641–10646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64. Martin‐Padura I, Lostaglio S, Schneemann M, et al Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 1998; 142: 117–127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. Cohen CJ, Shieh JT, Pickles RJ, Okegawa T, Hsieh JT, Bergelson JM. The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci 2001; 98: 15191–15196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66. Carson M. Ribbon models of macromolecules. J Mol Graph 1987; 5: 103–106. [Google Scholar]

Articles from Reviews in Medical Virology are provided here courtesy of Wiley

RESOURCES