Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2005 Nov 15;16(1):37–48. doi: 10.1002/rmv.483

Mechanisms of action of ribavirin against distinct viruses

Jason D Graci 1, Craig E Cameron 1,
PMCID: PMC7169142  PMID: 16287208

Abstract

The nucleoside analogue ribavirin has antiviral activity against many distinct viruses both in vitro and in vivo. Five distinct mechanisms have been proposed to explain the antiviral properties of ribavirin. These include both indirect mechanisms (inosine monophosphate dehydrogenase inhibition, immunomodulatory effects) and direct mechanisms (interference with RNA capping, polymerase inhibition, lethal mutagenesis). Recent concerns about bioterrorism have renewed interest in exploring the antiviral activity of ribavirin against unique viruses. In this paper, we review the proposed mechanisms of action with emphasis on recent discoveries, as well as the implications of ribavirin resistance. Evidence exists to support each of the five proposed mechanisms of action, and distinct virus/host combinations may preferentially favour one or more of these mechanisms during antiviral therapy. Copyright © 2005 John Wiley & Sons, Ltd.

REFERENCES

  • 1. Witkowski JT, Robins RK, Sidwell RW, Simon LN. Design, synthesis, and broad spectrum antiviral activity of 1‐ ‐D‐ribofuranosyl‐1,2,4‐triazole‐3‐carboxamide and related nucleosides. J Med Chem 1972; 15(11): 1150–1154. [DOI] [PubMed] [Google Scholar]
  • 2. Sidwell RW, Huffman JH, Khare GP, Allen LB, Witkowski JT, Robins RK. Broad‐spectrum antiviral activity of Virazole: 1‐beta‐D‐ribofuranosyl‐1,2,4‐triazole‐3‐carboxamide. Science 1972; 177(50): 705–706. [DOI] [PubMed] [Google Scholar]
  • 3. Prusiner P, Sundaralingam M. A new class of synthetic nucleoside analogues with broad‐spectrum antiviral properties. Nat New Biol 1973; 244(134): 116–118. [DOI] [PubMed] [Google Scholar]
  • 4. Cummings KJ, Lee SM, West ES et al Interferon and ribavirin vs interferon alone in the re‐treatment of chronic hepatitis C previously nonresponsive to interferon: a meta‐analysis of randomized trials. Jama 2001; 285(2): 193–199. [DOI] [PubMed] [Google Scholar]
  • 5. Davis GL, Esteban‐Mur R, Rustgi V, et al Interferon alfa‐2b alone or in combination with ribavirin for the treatment of relapse of chronic hepatitis C. International Hepatitis Interventional Therapy Group. N Engl J Med 1998; 339(21): 1493–1499. [DOI] [PubMed] [Google Scholar]
  • 6. Pawlotsky JM. Mechanisms of antiviral treatment efficacy and failure in chronic hepatitis C. Antiviral Res 2003; 59(1): 1–11. [DOI] [PubMed] [Google Scholar]
  • 7. Mangia A, Santoro R, Minerva N et al Peginterferon alfa‐2b and ribavirin for 12 vs. 24 weeks in HCV genotype 2 or 3. N Engl J Med 2005; 352(25): 2609–2617. [DOI] [PubMed] [Google Scholar]
  • 8. Cooper AC, Banasiak NC, Allen PJ. Management and prevention strategies for respiratory syncytial virus (RSV) bronchiolitis in infants and young children: a review of evidence‐based practice interventions. Pediatr Nurs 2003; 29(6): 452–456. [PubMed] [Google Scholar]
  • 9. McCormick JB, King IJ, Webb PA et al Lassa fever. Effective therapy with ribavirin. N Engl J Med 1986; 314(1): 20–26. [DOI] [PubMed] [Google Scholar]
  • 10. Bronze MS, Greenfield RA. Therapeutic options for diseases due to potential viral agents of bioterrorism. Curr Opin Investig Drugs 2003; 4(2): 172–178. [PubMed] [Google Scholar]
  • 11. Willis RC, Carson DA, Seegmiller JE. Adenosine kinase initiates the major route of ribavirin activation in a cultured human cell line. Proc Natl Acad Sci USA 1978; 75(7): 3042–3044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Page T, Connor JD. The metabolism of ribavirin in erythrocytes and nucleated cells. Int J Biochem 1990; 22(4): 379–383. [DOI] [PubMed] [Google Scholar]
  • 13. Zimmerman TP, Deeprose RD. Metabolism of 5‐amino‐1‐beta‐D‐ribofuranosylimidazole‐4‐carboxamide and related five‐membered heterocycles to 5′‐triphosphates in human blood and L5178Y cells. Biochem Pharmacol 1978; 27(5): 709–716. [DOI] [PubMed] [Google Scholar]
  • 14. Muller WE, Maidhof A, Taschner H, Zahn RK. Virazole (1‐beta‐D‐ribofuranosyl‐1,2,4‐triazole‐3‐carboxamide: a cytostatic agent. Biochem Pharmacol 1977; 26(11): 1071–1075. [DOI] [PubMed] [Google Scholar]
  • 15. Smee DF, Bray M, Huggins JW. Antiviral activity and mode of action studies of ribavirin and mycophenolic acid against orthopoxviruses in vitro. Antivir Chem Chemother 2001; 12(6): 327–335. [DOI] [PubMed] [Google Scholar]
  • 16. Bodenheimer HC, Jr. , Lindsay KL, Davis GL, Lewis JH, Thung SN, Seeff LB. Tolerance and efficacy of oral ribavirin treatment of chronic hepatitis C: a multicenter trial. Hepatology 1997; 26(2): 473–477. [DOI] [PubMed] [Google Scholar]
  • 17. Rankin JT Jr., Eppes SB, Antczak JB, Joklik WK. Studies on the mechanism of the antiviral activity of ribavirin against reovirus. Virology 1989; 168(1): 147–158. [DOI] [PubMed] [Google Scholar]
  • 18. Streeter DG, Witkowski JT, Khare GP et al Mechanism of action of 1‐D‐ribofuranosyl‐1,2,4‐triazole‐3‐carboxamide (Virazole): a new broad‐spectrum antiviral agent. Proc Natl Acad Sci USA 1973; 70(4): 1174–1178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Hager PW, Collart FR, Huberman E, Mitchell BS. Recombinant human inosine monophosphate dehydrogenase type I and type II proteins. Purification and characterization of inhibitor binding. Biochem Pharmacol 1995; 49(9): 1323–1329. [DOI] [PubMed] [Google Scholar]
  • 20. Sintchak MD, Nimmesgern E. The structure of inosine 5′‐monophosphate dehydrogenase and the design of novel inhibitors. Immunopharmacology 2000; 47(2–3): 163–184. [DOI] [PubMed] [Google Scholar]
  • 21. Leyssen P, Balzarini J, De Clercq E, Neyts J. The predominant mechanism by which ribavirin exerts its antiviral activity in vitro against flaviviruses and paramyxoviruses is mediated by inhibition of IMP dehydrogenase. J Virol 2005; 79(3): 1943–1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Balzarini J, Karlsson A, Wang L et al Eicar (5‐ethynyl‐1‐beta‐D‐ribofuranosylimidazole‐4‐carboxamide). A novel potent inhibitor of inosinate dehydrogenase activity and guanylate biosynthesis. J Biol Chem 1993; 268(33): 24591–24598. [PubMed] [Google Scholar]
  • 23. Allison AC, Eugui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology 2000; 47(2–3): 85–118. [DOI] [PubMed] [Google Scholar]
  • 24. Wray SK, Gilbert BE, Noall MW, Knight V. Mode of action of ribavirin: effect of nucleotide pool alterations on influenza virus ribonucleoprotein synthesis. Antiviral Res 1985; 5(1): 29–37. [DOI] [PubMed] [Google Scholar]
  • 25. Crotty S, Maag D, Arnold JJ et al The broad‐spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nat Med 2000; 6(12): 1375–1379. [DOI] [PubMed] [Google Scholar]
  • 26. Lanford RE, Chavez D, Guerra B et al Ribavirin induces error‐prone replication of GB virus B in primary tamarin hepatocytes. J Virol 2001; 75(17): 8074–8081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Baba M, Pauwels R, Balzarini J, Herdewijn P, De Clercq E, Desmyter J. Ribavirin antagonizes inhibitory effects of pyrimidine 2′,3′‐dideoxynucleosides but enhances inhibitory effects of purine 2′,3′‐dideoxynucleosides on replication of human immunodeficiency virus in vitro. Antimicrob Agents Chemother 1987; 31(10): 1613–1617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Balzarini J, Herdewijn P, De Clercq E. Potentiating effect of ribavirin on the anti‐retrovirus activity of 3′‐azido‐2,6‐diaminopurine‐2′,3′‐dideoxyriboside in vitro and in vivo. Antiviral Res 1989; 11(4): 161–171. [DOI] [PubMed] [Google Scholar]
  • 29. Balzarini J, Naesens L, Robins MJ, De Clercq E. Potentiating effect of ribavirin on the in vitro and in vivo antiretrovirus activities of 2′,3′‐dideoxyinosine and 2′,3′‐dideoxy‐2,6‐diaminopurine riboside. J Acquir Immune Defic Syndr 1990; 3(12): 1140–1147. [PubMed] [Google Scholar]
  • 30. Fernandez‐Larsson R, Patterson JL. Ribavirin is an inhibitor of human immunodeficiency virus reverse transcriptase. Mol Pharmacol 1990; 38(6): 766–770. [PubMed] [Google Scholar]
  • 31. Ying C, De Clercq E, Neyts J. Ribavirin and mycophenolic acid potentiate the activity of guanine‐ and diaminopurine‐based nucleoside analogues against hepatitis B virus. Antiviral Res 2000; 48(2): 117–124. [DOI] [PubMed] [Google Scholar]
  • 32. Pancheva SN. Potentiating effect of ribavirin on the anti‐herpes activity of acyclovir. Antiviral Res 1991; 16(2): 151–161. [DOI] [PubMed] [Google Scholar]
  • 33. Vogt MW, Hartshorn KL, Furman PA et al Ribavirin antagonizes the effect of azidothymidine on HIV replication. Science 1987; 235(4794): 1376–1379. [DOI] [PubMed] [Google Scholar]
  • 34. Dusheiko G, Main J, Thomas H et al Ribavirin treatment for patients with chronic hepatitis C: results of a placebo‐controlled study. J Hepatol 1996; 25(5): 591–598. [DOI] [PubMed] [Google Scholar]
  • 35. Hultgren C, Milich DR, Weiland O, Sallberg M. The antiviral compound ribavirin modulates the T helper (Th) 1/Th2 subset balance in hepatitis B and C virus‐specific immune responses. J Gen Virol 1998; 79(Pt 10): 2381–2391. [DOI] [PubMed] [Google Scholar]
  • 36. Mosmann TR, Sad S. The expanding universe of T‐cell subsets: Th1, Th2 and more. Immunol Today 1996; 17(3): 138–146. [DOI] [PubMed] [Google Scholar]
  • 37. Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989; 7: 145–173. [DOI] [PubMed] [Google Scholar]
  • 38. Tsai SL, Liaw YF, Chen MH, Huang CY, Kuo GC. Detection of type 2‐like T‐helper cells in hepatitis C virus infection: implications for hepatitis C virus chronicity. Hepatology 1997; 25(2): 449–458. [DOI] [PubMed] [Google Scholar]
  • 39. Tam RC, Pai B, Bard J et al Ribavirin polarizes human T cell responses towards a Type 1 cytokine profile. J Hepatol 1999; 30(3): 376–382. [DOI] [PubMed] [Google Scholar]
  • 40. Tam RC, Ramasamy K Bard J, Pai B, Lim C, Averett DR. The ribavirin analogue ICN 17261 demonstrates reduced toxicity and antiviral effects with retention of both immunomodulatory activity and reduction of hepatitis‐induced serum alanine aminotransferase levels. Antimicrob Agents Chemother 2000; 44(5): 1276–1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Wang P, Hong JH, Cooperwood JS, Chu CK. Recent advances in L‐nucleosides: chemistry and biology. Antiviral Res 1998; 40(1–2): 19–44. [DOI] [PubMed] [Google Scholar]
  • 42. Pockros P et al. Combination of Levovirin (LVV) and Pegylated Interferon alfa‐2a (40 kD) (Pegasys) fails to generate a virological response comparable to ribavirin (RBV, Copegus) and Peginterferon alfa‐2a (40 KD) in patients with chronic hepatitis C. Hepatology 2004; 40(Sppl1): 391A. [Google Scholar]
  • 43. Pawlotsky JM, Dahari H, Neumann AU et al Antiviral action of ribavirin in chronic hepatitis C. Gastroenterology 2004; 126(3): 703–714. [DOI] [PubMed] [Google Scholar]
  • 44. Dixit NM, Layden‐Almer JE, Layden TJ, Perelson AS. Modelling how ribavirin improves interferon response rates in hepatitis C virus infection. Nature 2004; 432(7019): 922–924. [DOI] [PubMed] [Google Scholar]
  • 45. Bisaillon M, Lemay G. Viral and cellular enzymes involved in synthesis of mRNA cap structure. Virology 1997; 236(1): 1–7. [DOI] [PubMed] [Google Scholar]
  • 46. De Benedetti A, Graff JR. eIF‐4E expression and its role in malignancies and metastases. Oncogene 2004; 23(18): 3189–3199. [DOI] [PubMed] [Google Scholar]
  • 47. Mamane Y, Petroulakis E, Rong L, Yoshida K, Ler LW, Sonenberg N. eIF4E–from translation to transformation. Oncogene 2004; 23(18): 3172–3179. [DOI] [PubMed] [Google Scholar]
  • 48. Kentsis A, Topisirovic I, Culjkovic B, Shao L, Borden KL. Ribavirin suppresses eIF4E‐mediated oncogenic transformation by physical mimicry of the 7‐methyl guanosine mRNA cap. Proc Natl Acad Sci USA 2004; 101(52): 18105–18110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Campbell Dwyer EJ, Lai H, MacDonald RC, Salvato MS, Borden KL. The lymphocytic choriomeningitis virus RING protein Z associates with eukaryotic initiation factor 4E and selectively represses translation in a RING‐dependent manner. J Virol 2000; 74(7): 3293–3300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. von Grotthuss M, Wyrwicz LS, Rychlewski L. mRNA cap‐1 methyltransferase in the SARS genome. Cell 2003; 113(6): 701–702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. Yan Y, Svitkin Y, Lee JM, Bisaillon M, Pelletier J. Ribavirin is not a functional mimic of the 7‐methyl guanosine mRNA cap. Rna 2005; 11(8): 1238–1244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Scheidel LM, Durbin RK, Stollar V. Sindbis virus mutants resistant to mycophenolic acid and ribavirin. Virology 1987; 158(1): 1–7. [DOI] [PubMed] [Google Scholar]
  • 53. Scheidel LM, Stollar V. Mutations that confer resistance to mycophenolic acid and ribavirin on Sindbis virus map to the nonstructural protein nsP1. Virology 1991; 181(2): 490–499. [DOI] [PubMed] [Google Scholar]
  • 54. Goswami BB, Borek E, Sharma OK, Fujitaki J, Smith RA. The broad spectrum antiviral agent ribavirin inhibits capping of mRNA. Biochem Biophys Res Commun 1979; 89(3): 830–836. [DOI] [PubMed] [Google Scholar]
  • 55. Bougie I, Bisaillon M. The broad spectrum antiviral nucleoside ribavirin as a substrate for a viral RNA capping enzyme. J Biol Chem 2004; 279(21): 22124–22130. [DOI] [PubMed] [Google Scholar]
  • 56. Benarroch D, Egloff MP, Mulard L, Guerreiro C, Romette JL, Canard B. A structural basis for the inhibition of the NS5 dengue virus mRNA 2′‐O‐methyltransferase domain by ribavirin 5′‐triphosphate. J Biol Chem 2004; 279(34): 35638–35643. [DOI] [PubMed] [Google Scholar]
  • 57. Eriksson B, Helgstrand E, Johansson NG et al Inhibition of influenza virus ribonucleic acid polymerase by ribavirin triphosphate. Antimicrob Agents Chemother 1977; 11(6): 946–951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Maag D, Castro C, Hong Z, Cameron CE. Hepatitis C virus RNA‐dependent RNA polymerase (NS5B) as a mediator of the antiviral activity of ribavirin. J Biol Chem 2001; 276(49): 46094–46098. [DOI] [PubMed] [Google Scholar]
  • 59. Vo NV, Young KC, Lai MM. Mutagenic and inhibitory effects of ribavirin on hepatitis C virus RNA polymerase. Biochemistry 2003; 42(35): 10462–10471. [DOI] [PubMed] [Google Scholar]
  • 60. Fernandez‐Larsson R, O'Connell K, Koumans E, Patterson JL. Molecular analysis of the inhibitory effect of phosphorylated ribavirin on the vesicular stomatitis virus in vitro polymerase reaction. Antimicrob Agents Chemother 1989; 33(10): 1668–1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61. Toltzis P, O'Connell K, Patterson JL. Effect of phosphorylated ribavirin on vesicular stomatitis virus transcription. Antimicrob Agents Chemother 1988; 32(4): 492–497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Steinhauer DA, Domingo E, Holland JJ. Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase. Gene 1992; 122(2): 281–288. [DOI] [PubMed] [Google Scholar]
  • 63. Domingo E, Escarmis C, Sevilla N et al Basic concepts in RNA virus evolution. Faseb J 1996; 10(8): 859–864. [DOI] [PubMed] [Google Scholar]
  • 64. Domingo E, Martinez‐Salas E, Sobrino F, et al The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance—a review. Gene 1985; 40(1): 1–8. [DOI] [PubMed] [Google Scholar]
  • 65. Domingo E. Viruses at the edge of adaptation. Virology 2000; 270(2): 251–253. [DOI] [PubMed] [Google Scholar]
  • 66. Loeb LA, Essigmann JM, Kazazi F, Zhang J, Rose KD, Mullins JI. Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proc Natl Acad Sci USA 1999; 96(4): 1492–1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67. Crotty S, Cameron CE, Andino R. RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci USA 2001; 98(12): 6895–6900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68. Wakita T, Pietschmann T, Kato T, et al Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 2005; 11(7): 791–796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. Heller T, Saito S, Auerbach J et al An in vitro model of hepatitis C virion production. Proc Natl Acad Sci USA 2005; 102(7): 2579–2583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Lindenbach BD, Evans MJ, Syder AJ et al Complete replication of hepatitis C virus in cell culture. Science 2005; 309(5734): 623–626. [DOI] [PubMed] [Google Scholar]
  • 71. Contreras AM, Hiasa Y, He W, Terella A, Schmidt EV, Chung RT. Viral RNA mutations are region specific and increased by ribavirin in a full‐length hepatitis C virus replication system. J Virol 2002; 76(17): 8505–8517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72. Lanford RE, Guerra B, Lee H et al Antiviral effect and virus‐host interactions in response to alpha interferon, gamma interferon, poly(i)‐poly(c), tumor necrosis factor alpha, and ribavirin in hepatitis C virus subgenomic replicons. J Virol 2003; 77(2): 1092–1104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73. Zhou S, Liu R, Baroudy BM, Malcolm BA, Reyes GR. The effect of ribavirin and IMPDH inhibitors on hepatitis C virus subgenomic replicon RNA. Virology 2003; 310(2): 333–342. [DOI] [PubMed] [Google Scholar]
  • 74. Huggins JW, Hsiang CM, Cosgriff TM et al Prospective, double‐blind, concurrent, placebo‐controlled clinical trial of intravenous ribavirin therapy of haemorrhagic fever with renal syndrome. J Infect Dis 1991; 164(6): 1119–1127. [DOI] [PubMed] [Google Scholar]
  • 75. Severson WE, Schmaljohn CS, Javadian A, Jonsson CB. Ribavirin causes error catastrophe during Hantaan virus replication. J Virol 2003; 77(1): 481–488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76. Jonsson CB, Milligan BG, Arterburn JB. Potential importance of error catastrophe to the development of antiviral strategies for hantaviruses. Virus Res 2005; 107(2): 195–205. [DOI] [PubMed] [Google Scholar]
  • 77. Airaksinen A, Pariente N, Menendez‐Arias L, Domingo E. Curing of foot‐and‐mouth disease virus from persistently infected cells by ribavirin involves enhanced mutagenesis. Virology 2003; 311(2): 339–349. [DOI] [PubMed] [Google Scholar]
  • 78. Day CW, Smee DF, Julander JG, Yamshchikov VF, Sidwell RW, Morrey JD. Error‐prone replication of West Nile virus caused by ribavirin. Antiviral Res 2005; 67(1): 38–45. [DOI] [PubMed] [Google Scholar]
  • 79. Young KC, Lindsay KL, Lee KJ et al Identification of a ribavirin‐resistant NS5B mutation of hepatitis C virus during ribavirin monotherapy. Hepatology 2003; 38(4): 869–878. [DOI] [PubMed] [Google Scholar]
  • 80. Pfeiffer JK, Kirkegaard K. Ribavirin resistance in hepatitis C virus replicon‐containing cell lines conferred by changes in the cell line or mutations in the replicon RNA. J Virol 2005; 79(4): 2346–2355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81. Arnold JJ, Vignuzzi M, Stone JK, Andino R, Cameron CE. Remote site control of an active site fidelity checkpoint in a viral RNA‐dependent RNA polymerase. J Biol Chem 2005; 280(27): 25706–25716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82. Pfeiffer JK, Kirkegaard K. A single mutation in poliovirus RNA‐dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity. Proc Natl Acad Sci USA 2003; 100(12): 7289–7294. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Reviews in Medical Virology are provided here courtesy of Wiley

RESOURCES