Abstract
Viruses are intracellular pathogens that have to usurp some of the cellular machineries to provide an optimal environment for their own replication. An increasing number of reports reveal that many viruses induce modifications of nuclear substructures including nucleoli, whether they replicate or not in the nucleus of infected cells. Indeed, during infection of cells with various types of human viruses, nucleoli undergo important morphological modifications. A large number of viral components traffic to and from the nucleolus where they interact with different cellular and/or viral factors, numerous host nucleolar proteins are redistributed in other cell compartments or are modified and some cellular proteins are delocalised in the nucleolus of infected cells. Well‐documented studies have established that several of these nucleolar modifications play a role in some steps of the viral cycle, and also in fundamental cellular pathways. The nucleolus itself is the place where several essential steps of the viral cycle take place. In other cases, viruses divert host nucleolar proteins from their known functions in order to exert new unexpected role(s). Copyright © 2009 John Wiley & Sons, Ltd.
REFERENCES
- 1. Zimber A, Nguyen Q, Gespach C. Nuclear bodies and compartments: functional roles and cellular signalling in health and disease. Cell Signal 2004; 16: 1085–1104. [DOI] [PubMed] [Google Scholar]
- 2. Olson M, Dundr M. The moving parts of the nucleolus. Histochem Cell Biol 2005; 123: 203–216. [DOI] [PubMed] [Google Scholar]
- 3. Coute Y, Burgess J, Diaz J, et al. Deciphering the human nucleolar proteome. Mass Spectrom Rev 2006; 25: 215–234. [DOI] [PubMed] [Google Scholar]
- 4. Leung A, Trinkle‐Mulcahy L, Lam YW, et al. NOPdb: nucleolar proteome database. Nucleic Acids Res 2006; 34: D218–220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Boisvert F, van Koningsbruggen S, Navascues J, Lamond AI. The multifunctional nucleolus. Nat Rev Mol Cell Biol 2007; 8: 574–585. [DOI] [PubMed] [Google Scholar]
- 6. Hiscox J. RNA viruses: hijacking the dynamic nucleolus. Nat Rev Microbiol 2007; 5: 119–127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Sirri V, Urcuqui‐Inchima S, Roussel P, Hernandez‐Verdun D. Nucleolus: the fascinating nuclear body. Histochem Cell Biol 2008; 129: 13–31. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. Ugrinova I, Monier K, Ivaldi C, et al. Inactivation of nucleolin leads to nucleolar disruption, cell cycle arrest and defects in centrosome duplication. BMC Mol Biol 2007; 8: 66. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Mongelard F, Bouvet P. Nucleolin: a multiFACeTed protein. Trends Cell Biol 2007; 17: 80–86. [DOI] [PubMed] [Google Scholar]
- 10. Storck S, Shukla M, Dimitrov S, Bouvet P. Functions of the histone chaperone nucleolin in diseases. Subcell Biochem 2007; 41: 125–144. [DOI] [PubMed] [Google Scholar]
- 11. Roussel P, Hernandez‐Verdun D. Identification of Ag‐NOR proteins, markers of proliferation related to ribosomal gene activity. Exp Cell Res 1994; 214: 465–472. [DOI] [PubMed] [Google Scholar]
- 12. Derenzini M, Sirri V, Trere D, Ochs RL. The quantity of nucleolar proteins nucleolin and protein B23 is related to cell doubling time in human cancer cells. Lab Invest 1995; 73: 497–502. [PubMed] [Google Scholar]
- 13. Sirri V, Roussel P, Gendron MC, Hernandez‐Verdun D. Amount of the two major Ag‐NOR proteins, nucleolin, and protein B23 is cell‐cycle dependent. Cytometry 1997; 28: 147–156. [PubMed] [Google Scholar]
- 14. Okuwaki M. The structure and functions of NPM1/Nucleophsmin/B23, a multifunctional nucleolar acidic protein. J Biochem 2008; 143: 441–448. [DOI] [PubMed] [Google Scholar]
- 15. Lange A, Mills R, Lange C, Stewart M, Devine SE, Corbett AH. Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem 2007; 282: 5101–5105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Carmo‐Fonseca M, Mendes‐Soares L, Campos I. To be or not to be in the nucleolus. Nat Cell Biol 2000; 2: E107–112. [DOI] [PubMed] [Google Scholar]
- 17. Emmott E, Dove B, Howell G, et al. Viral nucleolar localisation signals determine dynamic trafficking within the nucleolus. Virology 2008; 380: 191–202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Christian S, Pilch J, Akerman ME, Porkka K, Laakkonen P, Ruoslahti E. Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell Biol 2003; 163: 871–878. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. Hovanessian A, Puvion‐Dutilleul F, Nisole S, et al. The cell‐surface‐expressed nucleolin is associated with the actin cytoskeleton. Exp Cell Res 2000; 261: 312–328. [DOI] [PubMed] [Google Scholar]
- 20. Galati D, Paiardini M, Cervasi B, et al. Specific changes in the posttranslational regulation of nucleolin in lymphocytes from patients infected with human immunodeficiency virus. J Infect Dis 2003; 188: 1483–1491. [DOI] [PubMed] [Google Scholar]
- 21. Galati D, Bocchino M. New insights on the perturbations of T cell cycle during HIV infection. Curr Med Chem 2007; 14: 1920–1924. [DOI] [PubMed] [Google Scholar]
- 22. Nisole S, Krust B, Hovanessian A. Anchorage of HIV on permissive cells leads to coaggregation of viral particles with surface nucleolin at membrane raft microdomains. Exp Cell Res 2002; 276: 155–173. [DOI] [PubMed] [Google Scholar]
- 23. Said E, Courty J, Svab J, Delbe J, Krust B, Hovanessian AG. Pleiotrophin inhibits HIV infection by binding the cell surface‐expressed nucleolin. FEBS J 2005; 272: 4646–4659. [DOI] [PubMed] [Google Scholar]
- 24. Hovanessian AG. Midkine, a cytokine that inhibits HIV infection by binding to the cell surface expressed nucleolin. Cell Res 2006; 16: 174–181. [DOI] [PubMed] [Google Scholar]
- 25. Bose S, Basu M, Banerjee AK. Role of nucleolin in human parainfluenza virus type 3 infection of human lung epithelial cells. J Virol 2004; 78: 8146–8158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. de Verdugo UR, Selinka HC, Huber M, et al. Characterization of a 100‐kilodalton binding protein for the six serotypes of coxsackie B viruses. J Virol 1995; 69: 6751–6757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. Fankhauser C, Izaurralde E, Adachi Y, Wingfield P, Laemmli UK. Specific complex of human immunodeficiency virus type 1 rev and nucleolar B23 proteins: dissociation by the Rev response element. Mol Cell Biol 1991; 11: 2567–2575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. Szebeni A, Mehrotra B, Baumann A, Adam SA, Wingfield PT, Olson MO. Nucleolar protein B23 stimulates nuclear import of the HIV‐1 Rev protein and NLS‐conjugated albumin. Biochemistry 1997; 36: 3941–3949. [DOI] [PubMed] [Google Scholar]
- 29. Li Y‐P. Protein B23 is an important human factor of the nucleolar localization of the human immunodeficiency virus protein Tat. J Virol 1997; 71: 4098–4102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Siomi H, Shida H, Maki M, Hatanaka M. Effects of a highly basic region of human immunodeficiency virus Tat protein on nucleolar localization. J Virol 1990; 64: 1803–1807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Young T, Wang Q, Péery T, Mathews MB. The human I‐mfa domain‐containing protein, HIC, interacts with cyclin T1 and modulates P‐TEFb‐dependent transcription. Mol Cell Biol 2003; 23: 6373–6384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32. Hoque M, Tian B, Mathews MB, Péery T. Granulin and granulin repeats interact with the Tat. P‐TEFb complex and inhibit Tat transactivation. J Biol Chem 2005; 280: 13648–13657. [DOI] [PubMed] [Google Scholar]
- 33. Canto‐Nogues C, Hockley D, Grief C, et al. Ultrastructural localization of the RNA of immunodeficiency viruses using electron microscopy in situ hybridization and in vitro infected lymphocytes. Micron 2001; 32: 579–589. [DOI] [PubMed] [Google Scholar]
- 34. Michienzi A, Cagnon L, Bahner I, Rossi JJ. Ribozyme‐mediated inhibition of HIV 1 suggests nucleolar trafficking of HIV‐1 RNA. Proc Natl Acad Sci USA 2000; 97: 8955–8960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35. Michienzi A, De Angelis FG, Bozzoni I, Rossi JJ. A nucleolar localizing Rev binding element inhibits HIV replication. AIDS Res Ther 2006; 3: 13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36. Daelemans D, Costes S, Cho E, Erwin‐Cohen RA, Lockett S, Pavlakis GN. In vivo HIV‐1 Rev multimerization in the nucleolus and cytoplasm identified by fluorescence resonance energy transfer. J Biol Chem 2004; 279: 50167–50175. [DOI] [PubMed] [Google Scholar]
- 37. Costes S, Daelemans D, Cho E, Dobbin Z, Pavlakis G, Lockett S. Automatic and quantitative measurement of protein‐protein colocalization in live cells. Biophys J 2004; 86: 3993–4003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. Ristea S, Dobbelstein M, Roth J. Rev protein of human immunodeficiency virus type 1 and cellular exportin 1 protein relocalize each other to a subnucleolar structure. AIDS Res Hum Retroviruses 2000; 16: 857–865. [DOI] [PubMed] [Google Scholar]
- 39. Zolotukhin A, Felber BK. Nucleoporins nup98 and nup214 participate in nuclear export of human immunodeficiency virus type 1 Rev. J Virol 1999; 73: 120–127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40. Kramer‐Hammerle S, Ceccherini‐Silberstein F, Bickel C, et al. Identification of a novel Rev‐interacting cellular protein. BMC Cell Biol 2005; 6: 20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41. Hakata Y, Umemoto T, Matsushita S, Shida H. Involvement of human CRM1 (exportin 1) in the export and multimerization of the Rex protein of human T‐cell leukemia virus type 1. J Virol 1998; 72: 6602–6607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42. Fu L, White KN. Enhancement of nucleocytoplasmic export of HTLV‐1 Rex mRNA through cis and trans interactions of the mRNA with the complex of Rex protein and Rex‐responsive element. FEBS Lett 1996; 396: 47–52. [DOI] [PubMed] [Google Scholar]
- 43. Nicot C, Dundr M, Johnson JM, et al. HTLV‐1‐encoded p30II is a post‐transcriptional negative regulator of viral replication. Nat Med 2004; 10: 197–201. [DOI] [PubMed] [Google Scholar]
- 44. Adachi Y, Copeland T, Takahashi C, et al. Phosphorylation of the Rex protein of human T‐cell leukemia virus type I. J Biol Chem 1992; 267: 21977–21981. [PubMed] [Google Scholar]
- 45. Baydoun H, Duc‐Dodon M, Lebrun S, Gazzolo L, Bex F. Regulation of the human T‐cell leukemia virus gene expression depends on the localization of regulatory proteins Tax, Rex and p30II in specific nuclear subdomains. Gene 2007; 386: 191–201. [DOI] [PubMed] [Google Scholar]
- 46. Koralnik I, Fullen J, Franchini G. The p12I, p13II, and p30II proteins encoded by human T‐cell leukemia/lymphotropic virus type I open reading frames I and II are localized in three different cellular compartments. J Virol 1993; 67: 2360–2366. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47. Adachi Y, Copeland T, Hatanaka M, Oroszlan S. Nucleolar targeting signal of Rex protein of human T‐cell leukemia virus type I specifically binds to nucleolar shuttle protein B‐23. J Biol Chem 1993; 268: 13930–13934. [PubMed] [Google Scholar]
- 48. Narayan M, Younis I, D'Agostino DM, Green PL. Functional domain structure of human T‐cell leukemia virus type 2 rex. J Virol 2003; 77: 12829–12840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49. Wistuba A, Kern A, Weger S, Grimm D, Kleinschmidt JA. Subcellular compartmentalization of adeno‐associated virus type 2 assembly. J Virol 1997; 71: 1341–1352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50. Qiu J, Brown KE. A 110‐kDa nuclear shuttle protein, nucleolin, specifically binds to adeno‐associated virus type 2 (AAV‐2) capsid. Virology 1999; 257: 373–382. [DOI] [PubMed] [Google Scholar]
- 51. Bevington J, Needham P, Verrill K, Collaco R, Basrur V, Trempe JP. Adeno‐associated virus interactions with B23/Nucleophosmin: identification of sub‐nucleolar virion regions. Virology 2007; 357: 102–113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52. Johnson J, Samulski RJ. Enhancement of AAV infection by mobilizing capsids into and out of the nucleolus. J Virol 2009; 83: 2632–2644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53. Matthews DA. Adenovirus protein V induces redistribution of nucleolin and B23 from nucleolus to cytoplasm. J Virol 2001; 75: 1031–1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54. Bertrand L, Pearson A. The conserved N‐terminal domain of herpes simplex virus 1 UL24 protein is sufficient to induce the spatial redistribution of nucleolin. J Gen Virol 2008; 89: 1142–1151. [DOI] [PubMed] [Google Scholar]
- 55. Lee C, Chang S, Chen C, Chang MF. The nucleolin binding activity of hepatitis delta antigen is associated with nucleolus targeting. J Biol Chem 1998; 273: 7650–7656. [DOI] [PubMed] [Google Scholar]
- 56. Tan K, Shih K, Lo SJ. Ser‐123 of the large antigen of hepatitis delta virus modulates its cellular localization to the nucleolus, SC‐35 speckles or the cytoplasm. J Gen Virol 2004; 85: 1685–1694. [DOI] [PubMed] [Google Scholar]
- 57. Hirano M, Kaneko S, Yamashita T, et al. Direct interaction between nucleolin and hepatitis C virus NS5B. J Biol Chem 2003; 278: 5109–5115. [DOI] [PubMed] [Google Scholar]
- 58. Kusakawa T, Shimakami T, Kaneko S, Yoshioka K, Murakami S. Functional interaction of hepatitis C Virus NS5B with Nucleolin GAR domain. J Biochem 2007; 141: 917–927. [DOI] [PubMed] [Google Scholar]
- 59. Falcon V, Acosta‐Rivero N, Chinea G, et al. Nuclear localization of nucleocapsid‐like particles and HCV core protein in hepatocytes of a chronically HCV‐infected patient. Biochem Biophys Res Commun 2003; 310: 54–58. [DOI] [PubMed] [Google Scholar]
- 60. Otsuka M, Kato N, Lan K, et al. Hepatitis C virus core protein enhances p53 function through augmentation of DNA binding affinity and transcriptional ability. J Biol Chem 2000; 275: 34122–34130. [DOI] [PubMed] [Google Scholar]
- 61. Realdon S, Gerotto M, Dal Pero F, et al. Proapoptotic effect of hepatitis C virus CORE protein in transiently transfected cells is enhanced by nuclear localization and is dependent on PKR activation. J Hepatol 2004; 40: 77–85. [DOI] [PubMed] [Google Scholar]
- 62. Brady J, Kashanchi F. Tat gets the “green” light on transcription initiation. Retrovirology 2005; 2: 69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63. Liu H, Herrmann CH. Differential localization and expression of the Cdk9 42k and 55k isoforms. J Cell Physiol 2005; 203: 251–260. [DOI] [PubMed] [Google Scholar]
- 64. Sweet T, Sawaya B, Khalili K, Amini S. Interplay between NFBP and NF‐kappaB modulates tat activation of the LTR. J Cell Physiol 2005; 204: 375–380. [DOI] [PubMed] [Google Scholar]
- 65. Marcello A, Cinelli R, Ferrari A, et al. Visualization of in vivo direct interaction between HIV‐1 TAT and human cyclin T1 in specific subcellular compartments by fluorescence resonance energy transfer. J Biol Chem 2001; 276: 39220–39225. [DOI] [PubMed] [Google Scholar]
- 66. Michienzi A, Li S, Zaia JA, Rossi JJ. A nucleolar TAR decoy inhibitor of HIV‐1 replication. Proc Natl Acad Sci USA 2002; 99: 14047–14052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67. Li M, Kim J, Li S, et al. Long‐term inhibition of HIV‐1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti‐HIV shRNA, anti‐CCR5 ribozyme, and a nucleolar‐localizing TAR decoy. Mol Ther 2005; 12: 900–909. [DOI] [PubMed] [Google Scholar]
- 68. Grinstein E, Wernet P, Snijders PJ, et al. Nucleolin as activator of human papillomavirus type 18 oncogene transcription in cervical cancer. J Exp Med 2002; 196: 1067–1078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69. Grinstein E, Shan Y, Karawajew L, et al. Cell cycle‐controlled interaction of nucleolin with the retinoblastoma protein and cancerous cell transformation. J Biol Chem 2006; 281: 22223–22235. [DOI] [PubMed] [Google Scholar]
- 70. Waggoner S, Sarnow P. Viral ribonucleoprotein complex formation and nucleolar‐cytoplasmic relocalization of nucleolin in poliovirus‐infected cells. J Virol 1998; 72: 6699–6709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71. Izumi R, Valdez B, Banerjee R, Srivastava M, Dasgupta A. Nucleolin stimulates viral internal ribosome entry site‐mediated translation. Virus Res 2001; 76: 17–29. [DOI] [PubMed] [Google Scholar]
- 72. Lu H, Li W, Noble WS, Payan D, Anderson DC. Riboproteomics of the hepatitis C virus internal ribosomal entry site. J Proteome Res 2004; 3: 949–957. [DOI] [PubMed] [Google Scholar]
- 73. Yu Y, Ji H, Doudna JA, Leary JA. Mass spectrometric analysis of the human 40S ribosomal subunit: native and HCV IRES‐bound complexes. Protein Sci 2005; 14: 1438–1446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74. Tollefson A, Ying B, Doronin K, Sidor PD, Wold WS. Identification of a new human adenovirus protein encoded by a novel late l‐strand transcription unit. J Virol 2007; 81: 12918–12926. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75. Rodrigues S, Silva N, Delicio L, Granato C, Andrade LE. The behavior of the coiled body in cells infected with adenovirus in vitro . Mol Biol Rep 1996; 23: 183–189. [DOI] [PubMed] [Google Scholar]
- 76. Okuwaki M, Iwamatsu A, Tsujimoto M, Nagata K. Identification of nucleophosmin/B23, an acidic nucleolar protein, as a stimulatory factor for in vitro replication of adenovirus DNA complexed with viral basic core proteins. J Mol Biol 2001; 311: 41–55. [DOI] [PubMed] [Google Scholar]
- 77. Lawrence F, McStay B, Matthews DA. Nucleolar protein upstream binding factor is sequestered into adenovirus DNA replication centres during infection without affecting RNA polymerase I location or ablating rRNA synthesis. J Cell Sci 2006; 119: 2621–2631. [DOI] [PubMed] [Google Scholar]
- 78. Samad M, Okuwaki M, Haruki H, Nagata K. Physical and functional interaction between a nucleolar protein nucleophosmin/B23 and adenovirus basic core proteins. FEBS Lett 2007; 581: 3283–3288. [DOI] [PubMed] [Google Scholar]
- 79. Hindley C, Davidson A, Matthews DA. Relationship between adenovirus DNA replication proteins and nucleolar proteins B23.1 and B23.2. J Gen Virol 2007; 88: 3244–3248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80. Calle A, Ugrinova I, Epstein AL, Bouvet P, Diaz JJ, Greco A. Nucleolin is required for an efficient herpes simplex virus type 1 infection. J Virol 2008; 82: 4762–4773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81. Stow N, Evans V, Matthews DA. Upstream‐binding factor is sequestered into herpes simplex virus type 1 replication compartments. J Gen Virol 2009; 90: 69–73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82. Shimakami T, Honda M, Kusakawa T, et al. Effect of hepatitis C virus (HCV) NS5B‐nucleolin interaction on HCV replication with HCV subgenomic replicon. J Virol 2006; 80: 3332–3340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83. Huang W, Yung B, Syu W, Lee YH. The nucleolar phosphoprotein B23 interacts with hepatitis delta antigens and modulates the hepatitis delta virus RNA replication. J Biol Chem 2001; 276: 25166–25175. [DOI] [PubMed] [Google Scholar]
- 84. Li Y, Macnaughton T, Gao L, Lai MM. RNA‐templated replication of hepatitis delta virus: genomic and antigenomic RNAs associate with different nuclear bodies. J Virol 2006; 80: 6478–6486. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85. Huang W, Chen Y, Chen PJ. Nucleolar targeting of hepatitis delta antigen abolishes its ability to initiate viral antigenomic RNA replication. J Virol 2008; 82: 692–699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86. Ueno T, Tokunaga K, Sawa H, et al. Nucleolin and the packaging signal, psi, promote the budding of human immunodeficiency virus type‐1 (HIV‐1). Microbiol Immunol 2004; 48: 111–118. [DOI] [PubMed] [Google Scholar]
- 87. Jordan P, Mannervik M, Tora L, Carmo‐Fonseca M. In vivo evidence that TATA‐binding protein/SL1 colocalizes with UBF and RNA polymerase I when rRNA synthesis is either active or inactive. J Cell Biol 1996; 133: 225–234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88. Tsuji T, Sun Y, Kishimoto K, et al. Angiogenin is translocated to the nucleus of HeLa cells and is involved in ribosomal RNA transcription and cell proliferation. Cancer Res 2005; 65: 1352–1360. [DOI] [PubMed] [Google Scholar]
- 89. Sadagopan S, Sharma‐Walia N, Veettil MV, et al. Kaposi's Sarcoma Associated Herpes Virus (KSHV/HHV‐8) Upregulates Angiogenin During Infection of Human Dermal Microvascular Endothelial Cells Which Induces 45SrRNA Synthesis, Anti‐apoptosis, Cell Proliferation, Migration and Angiogenesis. J Virol 2009. [Epub ahead of print]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90. Castiglia C, Flint SJ. Effects of adenovirus infection on rRNA synthesis and maturation in HeLa cells. Mol Cell Biol 1983; 3: 662–671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91. Puvion‐Dutilleul F, Christensen ME. Alterations of fibrillarin distribution and nucleolar ultrastructure induced by adenovirus infection. Eur J Cell Biol 1993; 61: 168–176. [PubMed] [Google Scholar]
- 92. Kao C, Chen S, Lee YH. Activation of RNA polymerase I transcription by hepatitis C virus core protein. J Biomed Sci 2004; 11: 72–94. [DOI] [PubMed] [Google Scholar]
- 93. Mai R, Yeh T, Kao C, Sun S, Huang H, Wu Lee YH. Hepatitis C virus core protein recruits nucleolar phosphoprotein B23 and coactivator p300 to relieve the repression effect of transcriptional factor YY1 on B23 gene expression. Oncogene 2006; 25: 448–462. [DOI] [PubMed] [Google Scholar]
- 94. Banerjee R, Weidman M, Navarro S, Comai L, Dasgupta A. Modifications of both selectivity factor and upstream binding factor contribute to poliovirus‐mediated inhibition of RNA polymerase I transcription. J Gen Virol 2005; 86: 2315–2322. [DOI] [PubMed] [Google Scholar]
- 95. Cawood R, Harrison S, Dove B, Reed M, Hiscox JA. Cell cycle dependent nucleolar localization of the coronavirus nucleocapsid protein. Cell Cycle 2007; 6: 863–867. [DOI] [PubMed] [Google Scholar]
- 96. You J, Dove B, Enjuanes L, et al. Subcellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein. J Gen Virol 2005; 86: 3303–3310. [DOI] [PubMed] [Google Scholar]
- 97. Timani K, Liao Q, Ye L, et al. Nuclear/nucleolar localization properties of C‐terminal nucleocapsid protein of SARS coronavirus. Virus Res 2005; 114: 23–34. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98. You J, Reed M, Hiscox JA. Trafficking motifs in the SARS‐coronavirus nucleocapsid protein. Biochem Biophys Res Commun 2007; 358: 1015–1020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99. Surjit M, Liu B, Chow VT, Lal SK. The nucleocapsid protein of severe acute respiratory syndrome‐coronavirus inhibits the activity of cyclin‐cyclin‐dependent kinase complex and blocks S phase progression in mammalian cells. J Biol Chem 2006; 281: 10669–10681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100. Zeng Y, Ye L, Zhu S, et al. The nucleocapsid protein of SARS‐associated coronavirus inhibits B23 phosphorylation. Biochem Biophys Res Commun 2008; 369: 287–291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101. Tokuyama Y, Horn H, Kawamura K, Tarapore P, Fukasawa K. Specific phosphorylation of nucleophosmin on Thr(199) by cyclin‐dependent kinase 2‐cyclin E and its role in centrosome duplication. J Biol Chem 2001; 276: 21529–21537. [DOI] [PubMed] [Google Scholar]
- 102. Khan S, Fielding B, Tan T, et al. Over‐expression of severe acute respiratory syndrome coronavirus 3b protein induces both apoptosis and necrosis in Vero E6 cells. Virus Res 2006; 122: 20–27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103. Yuan X, Shan Y, Zhao Z, Chen J, Cong Y. G0/G1 arrest and apoptosis induced by SARS‐CoV 3b protein in transfected cells. Virol J 2005; 2: 66. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104. Ning B, Shih C. Nucleolar localization of human hepatitis B virus capsid protein. J Virol 2004; 78: 13653–13668. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105. Giraud S, Diaz‐Latoud C, Hacot S, Textoris J, Bourette RP, Diaz JJ. US11 of herpes simplex virus type 1 interacts with HIPK2 and antagonizes HIPK2‐induced cell growth arrest. J Virol 2004; 78: 2984–2993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106. Hiscox J. The nucleolus—a gateway to viral infection? Arch Virol 2002; 147: 1077–1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107. Emmett S, Dove B, Mahoney L, Wurm T, Hiscox JA. The cell cycle and virus infection. Methods Mol Biol 2005; 296: 197–218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108. Dove B, You J, Reed M, Emmett S, Brooks G, Hiscox JA. Changes in nucleolar morphology and proteins during infection with the coronavirus infectious bronchitis virus. Cell Microbiol 2006; 8: 1147–1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109. Reed M, Howell G, Harrison S, Spencer K, Hiscox JA. Characterization of the nuclear export signal in the coronavirus infectious bronchitis virus nucleocapsid protein. J Virol 2007; 81: 4298–4304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110. Kim S, Ryabov E, Brown J, Taliansky M. Involvement of the nucleolus in plant virus systemic infection. Biochem Soc Trans 2004; 32: 557–560. [DOI] [PubMed] [Google Scholar]
- 111. Kolb G, Reigadas S, Castanotto D, et al. Endogenous expression of an anti‐TAR aptamer reduces HIV‐1 replication. RNA Biol 2006; 3: 150–156. [DOI] [PubMed] [Google Scholar]
- 112. Michienzi A, Castanotto D, Lee N, Li S, Zaia JA, Rossi JJ. RNA‐mediated inhibition of HIV in a gene therapy setting. Ann N Y Acad Sci 2003; 1002: 63–71. [DOI] [PubMed] [Google Scholar]
- 113. Unwalla H, Li H, Li S, Abad D, Rossi JJ. Use of a U16 snoRNA‐containing ribozyme library to identify ribozyme targets in HIV‐1. Mol Ther 2008; 16: 1113–1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 114. Elliott G, O'Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 1997; 88: 223–233. [DOI] [PubMed] [Google Scholar]
- 115. Helland D, Welles J, Caputo A, Haseltine WA. Transcellular transactivation by the human immunodeficiency virus type 1 tat protein. J Virol 1991; 65: 4547–4549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116. Koshizuka T, Takakuwa H, Goshima F, Murata T, Nishiyama Y. The US11 gene product of herpes simplex virus has intercellular trafficking activity. Biochem Biophys Res Commun 2001; 288: 597–602. [DOI] [PubMed] [Google Scholar]
- 117. Lutz P, Puvion‐Dutilleul F, Lutz Y, Kedinger C. Nucleoplasmic and nucleolar distribution of the adenovirus IVa2 gene product. J Virol 1996; 70: 3449–3460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118. Matthews D, Russell WC. Adenovirus core protein V is delivered by the invading virus to the nucleus of the infected cell and later in infection is associated with nucleoli. J Gen Virol 1998; 79: 1671–1675. [DOI] [PubMed] [Google Scholar]
- 119. Lee T, Blair G, Matthews DA. Adenovirus core protein VII contains distinct sequences that mediate targeting to the nucleus and nucleolus, and colocalization with human chromosomes. J Gen Virol 2003; 84: 3423–3428. [DOI] [PubMed] [Google Scholar]
- 120. Lee T, Lawrence F, Dauksaite V, Akusjarvi G, Blair GE, Matthews DA. Precursor of human adenovirus core polypeptide Mu targets the nucleolus and modulates the expression of E2 proteins. J Gen Virol 2004; 85: 185–196. [DOI] [PubMed] [Google Scholar]
- 121. Szekely L, Jiang WQ, Pokrovskaja K, Wiman KG, Klein G, Ringertz N. Reversible nucleolar translocation of Epstein‐Barr virus‐encoded EBNA‐5 and hsp70 proteins after exposure to heat shock or cell density congestion. J Gen Virol 1995; 76: 2423–2432. [DOI] [PubMed] [Google Scholar]
- 122. Shire K, Ceccarelli D, Avolio‐Hunter TM, Frappier L. EBP2, a human protein that interacts with sequences of the Epstein–Barr virus nuclear antigen 1 important for plasmid maintenance. J Virol 1999; 73: 2587–2595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123. Kashuba E, Mattsson K, Pokrovskaja K, et al. EBV‐encoded EBNA‐5 associates with P14ARF in extranucleolar inclusions and prolongs the survival of P14ARF‐expressing cells. Int J Cancer 2003; 105: 644–653. [DOI] [PubMed] [Google Scholar]
- 124. Kashuba E, Yurchenko M, Szirak K, Stahl J, Klein G, Szekely L. Epstein‐Barr virus‐encoded EBNA‐5 binds to Epstein–Barr virus‐induced Fte1/S3a protein. Exp Cell Res 2005; 303: 47–55. [DOI] [PubMed] [Google Scholar]
- 125. Arcangeletti M, De Conto F, Ferraglia F, et al. Human cytomegalovirus proteins PP65 and IEP72 are targeted to distinct compartments in nuclei and nuclear matrices of infected human embryo fibroblasts. J Cell Biochem 2003; 90: 1056–1067. [DOI] [PubMed] [Google Scholar]
- 126. Chou S, Marousek G, Senters A, Davis M, Biron KK. Mutations in the human cytomegalovirus UL27 gene that confer resistance to maribavir. J Virol 2004; 78: 7124–7130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127. Salsman J, Zimmerman N, Chen T, Domagala M, Frappier L. Genome‐wide screen of three herpesviruses for protein subcellular localization and alteration of PML nuclear bodies. PLoS Pathog 2008; 4: e1000100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128. Lopez‐Iglesias C, Puvion‐Dutilleul F, Cebrian J, Christensen ME. Herpes simplex virus type 1‐induced modifications in the distribution of nucleolar B‐36 protein. Eur J Cell Biol 1988; 46: 259–269. [PubMed] [Google Scholar]
- 129. Leopardi R, Roizman B. Functional interaction and colocalization of the herpes simplex virus 1 major regulatory protein ICP4 with EAP, a nucleolar‐ribosomal protein. Proc Natl Acad Sci USA 1996; 93: 4572–4576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130. Roller R, Monk L, Stuart D, Roizman B. Structure and function in the herpes simplex virus 1 RNA‐binding protein U(s)11: mapping of the domain required for ribosomal and nucleolar association and RNA binding in vitro . J Virol 1996; 70: 2842–2851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 131. Mears WE, Rice SA. The herpes simplex virus immediate‐early protein ICP27 shuttles between nucleus and cytoplasm. Virology 1998; 242: 128–137. [DOI] [PubMed] [Google Scholar]
- 132. Catez F, Erard M, Schaerer‐Uthurralt N, Kindbeiter K, Madjar J‐J, Diaz J‐J. Unique motif for nucleolar retention and nuclear export regulated by phosphorylation. Mol Cell Biol 2002; 22: 1126–1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 133. Cheng G, Brett M, He B. Signals that dictate nuclear, nucleolar, and cytoplasmic shuttling of the gamma(1)34.5 protein of herpes simplex virus type 1. J Virol 2002; 76: 9434–9445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134. Morency E, Coute Y, Thomas J, Texier P, Lomonte P. The protein ICP0 of herpes simplex virus type 1 is targeted to nucleoli of infected cells. Brief report. Arch Virol 2005; 150: 2387–2395. [DOI] [PubMed] [Google Scholar]
- 135. Lymberopoulos M, Pearson A. Involvement of UL24 in herpes‐simplex‐virus‐1‐induced dispersal of nucleolin. Virology 2007; 363: 397–409. [DOI] [PubMed] [Google Scholar]
- 136. Lopez M, Schlegel E, Wintersteller S, Blaho JA. The major tegument structural protein VP22 targets areas of dispersed nucleolin and marginalized chromatin during productive herpes simplex virus 1 infection. Virus Res 2008; 136: 175–188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 137. Hong‐Yan Z, Murata T, Goshima F, et al. Identification and characterization of the UL24 gene product of herpes simplex virus type 2. Virus Genes 2001; 22: 321–327. [DOI] [PubMed] [Google Scholar]
- 138. Yamada H, Jiang Y, Zhu H, Inagaki‐Ohara K, Nishiyama Y. Nucleolar localization of the UL3 protein of herpes simplex virus type 2. J Gen Virol 1999; 80: 2157–2164. [DOI] [PubMed] [Google Scholar]
- 139. Zhu H, Yamada H, Jiang Y, Yamada M, Nishiyama Y. Intracellular localization of the UL31 protein of herpes simplex virus type 2. Arch Virol 1999; 144: 1923–1935. [DOI] [PubMed] [Google Scholar]
- 140. Daelemans D, Afonina E, Nilsson J, et al. A synthetic HIV‐1 Rev inhibitor interfering with the CRM1‐mediated nuclear export. Proc Natl Acad Sci USA 2002; 99: 14440–14445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 141. Hivin P, Basbous J, Raymond F, et al. The HBZ‐SP1 isoform of human T‐cell leukemia virus type I represses JunB activity by sequestration into nuclear bodies. Retrovirology 2007; 4: 14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142. Melen K, Kinnunen L, Fagerlund R, et al. Nuclear and nucleolar targeting of influenza A virus NS1 protein: striking differences between different virus subtypes. J Virol 2007; 81: 5995–6006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143. Murayama R, Harada Y, Shibata T, et al. Influenza A virus non‐structural protein 1 (NS1) interacts with cellular multifunctional protein nucleolin during infection. Biochem Biophys Res Commun 2007; 362: 880–885. [DOI] [PubMed] [Google Scholar]
- 144. Yuan X, Li J, Shan Y, et al. Subcellular localization and membrane association of SARS‐CoV 3a protein. Virus Res 2005; 109: 191–202. [DOI] [PMC free article] [PubMed] [Google Scholar]