Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which the immune system mounts an attack on the host's insulin‐producing β cells. Because most cases of T1D cannot be attributed only to individual genetics, it is strongly inferred that there is a significant environmental contribution, such as infection, impacting disease development. The human enteroviruses (HEV) are common picornaviruses often implicated as triggers of human T1D, although precisely which of the numerous HEV may be involved in human T1D development is unknown. Experiments using non‐obese diabetic (NOD) mice, commonly used to model T1D, show that induction of T1D by HEV infection in NOD mice is a multifactorial process involving both the virus and the host. Interestingly, results demonstrate that HEV infection of NOD mice can also induce long‐term protection from T1D under certain conditions, suggesting that a similar mechanism may occur in humans. Based upon both experimental animal and observational human studies, we postulate that HEV have a dual role in T1D development and can either cause or prevent autoimmune disease. Whichever outcome occurs depends upon multiple variables in the host‐virus equation, many of which can be deduced from results obtained from NOD mouse studies. We propose that the background to the sharply rising T1D incidences observed in the 20th century correlates with increased levels of hygiene in human societies. Viewing T1D in this perspective suggests that potential preventative options could be developed. Copyright © 2009 John Wiley & Sons, Ltd.
REFERENCES
- 1. Akerblom HK, Vaarala O, Hyoty H, Ilonen J, Knip M. Environmental factors in the etiology of type 1 diabetes. Am J Med Genet 2002; 115: 18–29. [DOI] [PubMed] [Google Scholar]
- 2. Knip M, Akerblom HK. Environmental factors in the pathogenesis of type 1 diabetes mellitus. Exp Clin Endocrinol Diabetes 1999; 107 (Suppl. 3): S93–S100. [DOI] [PubMed] [Google Scholar]
- 3. Barnett AH, Eff C, Leslie R, Pyke D. Diabetes in identical twins. A study of 200 pairs. Diabetologia 1981; 20: 87–93. [DOI] [PubMed] [Google Scholar]
- 4. Hitman G, Sachs J, Cassell P, et al A DR3 related DXalpha gene polymorphism strongly associates with insulin‐dependent diabetes mellitus. Immunogenetics 1986; 23: 47–51. [DOI] [PubMed] [Google Scholar]
- 5. Lo S, Tun R, Hawa M, Leslie R. Studies of diabetic twins. Diabetes Metab Rev 1991; 7: 223–228. [DOI] [PubMed] [Google Scholar]
- 6. Metcalfe K, Hitman G, Rowe R, et al Concordance for type 1 diabetes in identical twins is affected by insulin genotype. Diabetes Care 2001; 24: 838–842. [DOI] [PubMed] [Google Scholar]
- 7. Redondo M, Yu L, Hawa M, et al Heterogeneity of type I diabetes: analysis of monozygotic twins in Great Britain and the United States. Diabetologia 2001; 44: 354–362. [DOI] [PubMed] [Google Scholar]
- 8. Smith C, Clements G, Riding M, Collins P, Bottazo G, Taylor K. Simultaneous onset of type 1 diabetes mellitus in identical infant twins with enterovirus infection. Diabet Med 1998; 15: 515–517. [DOI] [PubMed] [Google Scholar]
- 9. Craighead JE. The role of viruses in the pathogenesis of pancreatic disease and diabetes mellitus. Prog Med Virol 1975; 19: 161–214. [PubMed] [Google Scholar]
- 10. Jenson A, Rosenberg H. Multiple viruses in diabetes mellitus. Prog Med Virol 1984; 29: 197–217. [PubMed] [Google Scholar]
- 11. Ramsingh A, Chapman N, Tracy S. Coxsackieviruses and diabetes. Bioessays 1997; 19: 793–800. [DOI] [PubMed] [Google Scholar]
- 12. Szopa TM, Titchener PA, Portwood ND, Taylor KW. Diabetes mellitus due to viruses—some recent developments. Diabetologia 1993; 36: 687–695. [DOI] [PubMed] [Google Scholar]
- 13. Al–Hello H, Paanen A, Eskelinen M, et al An enterovirus strain isolated from a diabetic child belongs to a genetic subcluster of echovirus 11, but is also neutralized with monotypic antisera to coxsackievirus A9. J Gen Virol 2008; 89: 1949–1959. [DOI] [PubMed] [Google Scholar]
- 14. Andreoletti L, Hober D, Hober‐Vandenberghe C, et al Detection of coxsackie B virus RNA sequences in whole blood samples from adult patients at the onset of type I diabetes mellitus. J Med Virol 1997; 52: 121–127. [DOI] [PubMed] [Google Scholar]
- 15. Cabrera‐Rode E, Sarmiento L, Molina G, et al Islet cell related antibodies and type 1 diabetes associated with echovirus 30 epidemic: a case report. J Med Virol 2005; 76: 373–377. [DOI] [PubMed] [Google Scholar]
- 16. Cabrera‐Rode E, Sarmiento L, Tiberti C, et al Type 1 diabetes islet associated antibodies in subjects infected by echovirus 16. Diabetologia 2003; 46: 1348–1353. [DOI] [PubMed] [Google Scholar]
- 17. Diaz‐Horta O, Bello M, Cabrera‐Rode E, et al Echovirus 4 and type 1 diabetes mellitus. Autoimmunity 2001; 34: 275–281. [DOI] [PubMed] [Google Scholar]
- 18. Dotta F, Censini S, van Halteren AG, et al Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent‐onset type 1 diabetic patients. Proc Natl Acad Sci USA 2007; 104: 5115–5120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. Maria H, Elshebani A, Anders O, Torsten T, Gun F. Simultaneous type 1 diabetes onset in mother and son coincident with an enteroviral infection. J Clin Virol 2005; 33: 158–167. [DOI] [PubMed] [Google Scholar]
- 20. Otonkoski T, Roivainen M, Vaarala O, et al Neonatal Type I diabetes associated with maternal echovirus 6 infection: a case report. Diabetologia 2000; 43: 1235–1238. [DOI] [PubMed] [Google Scholar]
- 21. Paananen A, Ylipaasto P, Rieder E, Hovi T, Galama JM, Roivainen M. Molecular and biological analysis of echovirus 9 strain isolated from a diabetic child. J Med Virol 2003; 69: 529–537. [DOI] [PubMed] [Google Scholar]
- 22. Williams CH, Oikarinen S, Tauriainen S, Salminen K, Hyoty H, Stanway G. Molecular analysis of an echovirus 3 strain Isolated from an individual concurrently with appearance of islet cell and IA‐2 autoantibodies. J Clin Microbiol 2006; 44: 441–448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. Yoon J, Austin M, Onodera T, Notkins A. Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 1979; 300: 1173–1179. [DOI] [PubMed] [Google Scholar]
- 24. Champsaur H, Dussaix E, Samolyk D, Fabre M, Bach C, Assan R. Diabetes and coxsackievirus B5 infection. Lancet 1980; 1: 251–251. [DOI] [PubMed] [Google Scholar]
- 25. Chehadeh W, Weill J, Vantyghem M, et al Increased level of interferon alpha in blood of patients with insulin‐dependent diabetes mellitus: relationship with coxsackievirus B infection. J Infect Dis 2000; 181: 1929–1939. [DOI] [PubMed] [Google Scholar]
- 26. Moya‐Suri V, Schlosser M, Zimmermann K, Rjasanowski I, Gurtler L, Mentel R. Enterovirus RNA sequences in sera of schoolchildren in the general population and their association with type 1‐diabetes‐associated autoantibodies. J Med Microbiol 2005; 54: 879–883. [DOI] [PubMed] [Google Scholar]
- 27. Nairn C, Galbraith D, Taylor K, Clements GB. Enterovirus variants in the serum of children at the onset of type 1 diabetes mellitus. Diabet Med 1999; 16: 509–513. [DOI] [PubMed] [Google Scholar]
- 28. Viskari H, Ludvigsson J, Uibo R, et al Relationship between the incidence of type 1 diabetes and maternal enterovirus antibodies: time trends and geographical variation. Diabetologia 2005; 48: 1280–1287. [DOI] [PubMed] [Google Scholar]
- 29. Elshebani A, Olsson A, Westman J, Tuvemo T, Korsgren O, Frisk G. Effects on isolated human pancreatic islet cells after infection with strains of enterovirus isolated at clinical presentation of type 1 diabetes. Virus Res 2007; 124: 193–203. [DOI] [PubMed] [Google Scholar]
- 30. Hindersson M, Elshebani A, Orn A, Tuvemo T, Frisk G. Simultaneous type 1 diabetes onset in mother and son coincident with an enteroviral infection. J Clin Virol 2005; 33: 158–167. [DOI] [PubMed] [Google Scholar]
- 31. Enterovirus Surveillance—United States, 2002–2004. Morb Mortal Wkly Rep 2006; 55: 153–156. [PubMed] [Google Scholar]
- 32. Enterovirus Surveillance—United States, 1997–1999. Morb Mortal Wkly Rep 2000; 49: 913–916. [PubMed] [Google Scholar]
- 33. Control CFD . Non‐polio enterovirus surveillance—United States 1993–1996. Morb Mortal Wkly Rep 2000; 46: 748–750. [Google Scholar]
- 34. Oberste MS. Comparative genomics of the coxsackie B viruses and related enteroviruses. Curr Topics Microbiol Immunol 2008; 323: 33–48. [DOI] [PubMed] [Google Scholar]
- 35. Filippi C, Von Herrath M. How viral infections affect the autoimmune process leading to type 1 diabetes. Cell Immunol 2005; 233: 125–132. [DOI] [PubMed] [Google Scholar]
- 36. Filippi C, von Herrath M. Viral trigger for type 1 diabetes: pros and cons. Diabetes 2008; 57: 2863–2871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37. Horwitz MS, Bradley LM, Harbertson J, Krahl T, Lee J, Sarvetnick N. Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat Med 1998; 4: 781–785. [DOI] [PubMed] [Google Scholar]
- 38. Serreze DV, Ottendorfer EW, Ellis TM, Gauntt CJ, Atkinson MA. Acceleration of type 1 diabetes by a coxsackievirus infection requires a preexisting critical mass of autoreactive T‐cells in pancreatic islets. Diabetes 2000; 49: 708–711. [DOI] [PubMed] [Google Scholar]
- 39. Szopa TM, Ward T, Dronfield D, Portwood N, Taylor K. Coxsackie B4 viruses with the potential to damage beta cells of the islets are present in clinical isolates. Diabetologia 1990; 33: 325–328. [DOI] [PubMed] [Google Scholar]
- 40. Zipris D. Epidemiology of type 1 diabetes and what animal models teach us about the role of viruses in disease mechanisms. Clin Immunol 2009; 131: 11–23. [DOI] [PubMed] [Google Scholar]
- 41. Tracy S, Gauntt C. Group B coxsackievirus virulence. Curr Topics Microbiol Immunol 2008; 323: 49–66. [DOI] [PubMed] [Google Scholar]
- 42. Jenkins O, Booth JD, Minor PD, Almond JW. The complete nucleotide sequence of coxsackievirus B4 and its comparison to other members of the picornaviridae. J Gen Virol 1987; 68: 1835–1848. [DOI] [PubMed] [Google Scholar]
- 43. Kang J, Chatterjee N, Nodwell M, Yoon J. Complete nucleotide sequence of a strain of coxsackie B4 virus of human origin that induces diabetes in mice and its comparison with nondiabetogenic coxsackie B4 JBV strain. J Med Virol 1994; 44: 353–361. [DOI] [PubMed] [Google Scholar]
- 44. Ramsingh AL, Collins DN. A point mutation in the VP4 coding sequence of coxsackievirus B4 influences virulence. J Virol 1995; 69: 7278–7281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45. Coleman T, Taylor KW, R GD. The development of diabetes following coxsackie B virus infection in mice. Diabetologia 1974; 10: 755–759. [DOI] [PubMed] [Google Scholar]
- 46. Yoon J, Onodera T, Jenson A, Notkins A. Virus induced diabetes mellitus. XI. Replication of coxsackie B3 virus in human pancreatic beta cell cultures. Diabetes 1978; 27: 778–781. [DOI] [PubMed] [Google Scholar]
- 47. Yoon J, Onodera T, Notkins A. Virus induced diabetes mellitus. XV. Beta cell damage and insulin dependent hyperglycemia in mice infected with coxsackie virus B4. J Exp Med 1978; 148: 1068–1080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48. Richardson S, Willcox A, Bone A, Foulis A, Morgan N. The prevalence of enteroviral capsid protein VP1 immunostaining in pancreatic islets in human type 1 diabetes. Diabetologia Online 2009. [DOI] [PubMed] [Google Scholar]
- 49. Agol VI. Molecular mechanisms of poliovirus variation and evolution. Curr Topics Microbiol Immunol 2006; 299: 212–259. [DOI] [PubMed] [Google Scholar]
- 50. Lindberg A, Andersoon P, Savolainen C, Mulders MN, Hovi T. Evolution of the genome of human enterovirus B: incongruence between phylogenies of the VP1 and 3CD regions indicates frequent recombination within the species. J Gen Virol 2003; 84: 1223–1235. [DOI] [PubMed] [Google Scholar]
- 51. Biebricher CK, Eigen M. What is a quasispecies? Curr Topics Microbiol Immunol 2006; 299: 1–32. [DOI] [PubMed] [Google Scholar]
- 52. Domingo E, Martin V, Perales C, Escarmis C. Coxsackieviruses and quasispecies theory: evolution of enteroviruses. Curr Topics Microbiol Immunol 2008; 323: 3–32. [DOI] [PubMed] [Google Scholar]
- 53. Racaniello VR. One hundred years of poliovirus pathogenesis. Virology 2006; 344: 9–16. [DOI] [PubMed] [Google Scholar]
- 54. Nathanson N. The pathogenesis of poliomyelitis: what we don't know. Adv Virus Res 2008; 71: 3–42. [DOI] [PubMed] [Google Scholar]
- 55. Nathanson N, Martin J. The epidemiology of poliomyelitis: enigmas surrounding its appearance, epidemicity, and disappearance. Am J Epidemiol 1979; 110: 672–692. [DOI] [PubMed] [Google Scholar]
- 56. Graves P, Norris J, Hoffman M, Yu L, Eisenbarth G, Rewers M. Lack of association between early childhood immunizations and beta cell autoimmunity. Diabetes Care 1999; 22: 1694–1697. [DOI] [PubMed] [Google Scholar]
- 57. Hviid A, Wohlfahrt S, Melbye M. Childhood vaccination and type 1 diabetes. N Engl J Med 2004; 350: 1398–1404. [DOI] [PubMed] [Google Scholar]
- 58. Caggana M, Chan P, Ramsingh AL. Identification of a single amino acid residue in the capsid protein VP1 of coxsackievirus B4 that determines the virulent phenotype. J Virol 1993; 67: 4797–4803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59. Minor PD. Attenuation and reversion of the Sabin vaccine strains of poliovirus. Dev Biol Stand 1993; 78: 17–26. [PubMed] [Google Scholar]
- 60. Ramsingh AI. Coxsackievirus and pancreatitis. Front Biosci 1997; 2: 53–62. [DOI] [PubMed] [Google Scholar]
- 61. Sabin AB. Characteristics and genetic potentialities of experimentally produced and naturally occurring variants of poliomyelitis virus. Ann NY Acad Sci 1955; 61: 924–939. [DOI] [PubMed] [Google Scholar]
- 62. Tracy S, Chapman NM, Drescher KM, Kono K, Tapprich W. Evolution of virulence in picornaviruses. Curr Topics Microbiol Immunol 2006; 299: 193–210. [DOI] [PubMed] [Google Scholar]
- 63. Drescher KM, Kono K, Bopegamage S, Carson SD, Tracy S. Coxsackievirus B3 infection and type 1 diabetes development in NOD mice: insulitis determines susceptibility of pancreatic islets to virus infection. Virology 2004; 329: 381–394. [DOI] [PubMed] [Google Scholar]
- 64. Roivainen M, Ylipaasto P, Savolainen C, Galama J, Hovi T, Otonkoski T. Functional impairment and killing of human beta cells by enteroviruses: the capacity is shared by a wide range of serotypes, but the extent is a characteristic of individual virus strains. Diabetologia 2002; 45: 693–702. [DOI] [PubMed] [Google Scholar]
- 65. Pallansch MA, Roos R. Enteroviruses: polioviruses, coxsackieviruses, echoviruses and newer enteroviruses In Fields Virology, vol. 1, Knipe DM. (ed.). Wolters Kluwer: Philadelphia, 2007; 839–893. [Google Scholar]
- 66. Group TS . The environmental determinants of diabetes in the young (TEDDY) study: study design. Pediatr Diabetes 2007; 8: 286–298. [DOI] [PubMed] [Google Scholar]
- 67. Cherry JD. Enteroviruses In Infectious Diseases of the Fetus and Newborn Infant, 4th edn., Remington JS, Klein JO. (eds). W. B. Saunders Company: Philadelphia, 1995; 404–447. [Google Scholar]
- 68. Romero JT. Pediatric group B coxsackievirus infections. Curr Topics Microbiol Immunol 2008; 323: 223–239. [DOI] [PubMed] [Google Scholar]
- 69. Foulis AK, Farquharson M, Cameron S, McGill M, Schoenke H, Kandolf R. A search for the presence of enteroviral capsid protein VP1 in pancreases of patients with type 1 diabetes and pancreases and hearts of infants who died of coxsackieviral myocarditis. Diabetol 1990; 33: 290–298. [DOI] [PubMed] [Google Scholar]
- 70. Huff JC, Hierholzer JC, Farris W. An ‘outbreak’ of juvenile diabetes mellitus: consideration of a viral etiology. Am J Epidemiol 1974; 100: 277–287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71. Froeschle J, Feorino P, Gelfand HM. A continuing surveillance of enterovirus infection in healthy children in six United States cities. II. Surveillance enterovirus isolates 1960–1963 and comparison with enterovirus isolates from cases of acute central nervous system disease. Am J Epidemiol 1966; 83: 455–469. [DOI] [PubMed] [Google Scholar]
- 72. Kanno T, Kim K, Kono K, Drescher KM, Chapman NM, Tracy S. Group B coxsackievirus diabetogenic phenotype correlates with replication efficiency. J Virol 2006; 80: 5637–5643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73. Lee C‐K, Kono K, Haas E, et al Characterization of an infectious cDNA copy of the genome of a naturally‐occurring, avirulent coxsackievirus B3 clinical isolate. J Gen Virol 2005; 86: 197–210. [DOI] [PubMed] [Google Scholar]
- 74. Tracy S, Drescher KM, Chapman NM, et al Toward testing the hypothesis that group B coxsackieviruses (CVB) trigger insulin‐dependent diabetes: Inoculating nonobese diabetic mice with CVB markedly lowers diabetes incidence. J Virol 2002; 76: 12097–12111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75. Haller MJ, Atkinson MA, Schatz D. Type 1 diabetes mellitus: etiology, presentation, and management. Pediatr Clin North Am 2005; 52: 1553–78. [DOI] [PubMed] [Google Scholar]
- 76. Duffy D. Genetics determinants of diabetes are similarly associated with other immune‐mediated diseases. Curr Opinion Allergy Clin Immunol 2007; 7: 468–474. [DOI] [PubMed] [Google Scholar]
- 77. Liu S, Wang H, Jin Y, et al IFIH1 polymorphisms are significantly associated with type 1 diabetes and IFIH1 gene expression in peripheral blood mononuclear cells. Human Molec Genetics 2009; 18: 358–365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78. Nejentsev S, Walker N, Riches D, Egholm M, Todd J. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 2009; 324: 387–389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79. Qu H, Marchand L, Grabs R, Polychronakos C. The association between the IFIH1 locus and type 1 diabetes. Diabetologia 2008; 51: 473–475. [DOI] [PubMed] [Google Scholar]
- 80. Kato H, Takeuchi O, Sato S, et al Differential roles of MDA5 and RIG‐I helicases in the recognition of RNA viruses. Nature 2006; 441: 101–105. [DOI] [PubMed] [Google Scholar]
- 81. Racaniello VR. Picornaviridae: the viruses and their replication In Fields Virology, Knipe DM. (ed.). Wolters Kluwer: Philadelphia, 2007; 795–838. [Google Scholar]
- 82. Tam P, Messner R. Molecular mechanisms of coxsackievirus persistence in chronic inflammatory myopathy: viral RNA persists through formation of a double‐stranded complex without associated genomic mutations or evolution. J Virol 1999; 73: 10113–10121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83. Loo Y, Fornek J, Crochet N, et al Distinct RIG‐I and MDA5 signaling by RNA viruses in innate immunity. J Virol 2008; 82: 333–345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84. Karvonen M, Rusanen J, Sundberg M, et al Regional differences in the incidence of childhood insulin dependent diabetes mellitus among children in Finland between 1987 to 1991. Ann Med 1997; 29: 297–304. [DOI] [PubMed] [Google Scholar]
- 85. Karvonen M, Tuomilehto J, Libmann I, LaPorte R. A review of the recent epidemiological data on the worldwide incidence of Type 1 (insulin‐dependent) diabetes mellitus. World Health Organization DIAMOND Project Group. Diabetologia 1993; 36: 883–892. [DOI] [PubMed] [Google Scholar]
- 86. Atkinson MA, Leiter EH. The NOD mouse model of type 1 diabetes: As good as it gets? Nat Med 1999; 5: 601–604. [DOI] [PubMed] [Google Scholar]
- 87. Roep B, Atkinson MA, von Herrath MG. Satisfaction (not) guaranteed: re‐evaluating the use of animal models of type 1 diabetes. Nature Rev Immunol 2004; 4: 989–997. [DOI] [PubMed] [Google Scholar]
- 88. Roep BO. Are insights gained from NOD mice sufficient to guide clinical translation? Another inconvenient truth. Ann N Y Acad Sci 2007; 1103: 1–10. [DOI] [PubMed] [Google Scholar]
- 89. Freimuth P, Philipson L, Carson SD. The coxsackievirus and adenovirus receptor. Curr Topics Microbiol Immunol 2008; 323: 67–88. [DOI] [PubMed] [Google Scholar]
- 90. Oldstone MBA. Prevention of type 1 diabetes in NOD mice by virus infection. Science 1988; 239: 500–502. [DOI] [PubMed] [Google Scholar]
- 91. Wilberz S, Partke H, Dagnaes‐Hansen F, Herberg L. Persistent MHV (mouse hepatitis virus) infection reduces the incidence of diabetes mellitus in non‐obese diabetic mice. Diabetologia 1991; 34: 2–5. [DOI] [PubMed] [Google Scholar]
- 92. Hermitte L, Vialettes B, Naquet P, Atlan C, Payan MJ, Vague P. Paradoxical lessening of autoimmune processes in non‐obese diabetic mice after infection with the diabetogenic variant of encephalomyocarditis virus. Eur J Immunol 1990; 20: 1297–1303. [DOI] [PubMed] [Google Scholar]
- 93. Takei I, Asaba Y, Kasatani T, et al Suppression of development of diabetes in NOD mice by lactate dehydrogenase virus infection. J Autoimmun 1992; 5: 665–673. [DOI] [PubMed] [Google Scholar]
- 94. Filippi C, Estes E, Oldham J, von Herrath M. Immunoregulatory mechanisms triggered by viral infections protect from type 1 diabetes in mice. J Clin Investigation 2009; 119: 1515–1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95. Bresson D, Topher L, Rodrigo E, et al Anti‐CD3 and nasal proinsulin combination therapy enhances remission from recent‐onset autoimmune diabetes by inducing Tregs. J Clin Invest 2006; 116: 1371–1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96. Herold KC, Gitelman SE, Masharani U, et al A single course of anti‐CD3 monoclonal antibody hOKT3gamma1(Ala‐Ala) results in improvement in C‐peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 2005; 54: 1763–1769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97. Shoda LK, Young DL, Ramanujan S, et al A comprehensive review of interventions in the NOD mouse and implications for translation. Immunity 2005; 23: 115–26. [DOI] [PubMed] [Google Scholar]
- 98. Viskari HR, Koskela P, Lonnrot M, et al Can enterovirus infections explain the increasing incidence of type 1 diabetes? Diabetes Care 2000; 23: 414–416. [DOI] [PubMed] [Google Scholar]
- 99. Strachan DP. Hay fever, hygiene, and household size. Brit Med J 1989; 299: 1259–1260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100. Bunimovich‐Mendrazitsky S, Stone L. Modeling polio as a disease of development. J Theor Biol 2005; 237: 302–315. [DOI] [PubMed] [Google Scholar]
- 101. Horstmann DM. The poliomyelitis story: a scientific hegira. Yale J Biol Med 1985; 58: 79–90. [PMC free article] [PubMed] [Google Scholar]
- 102. Nathanson N, McGann KA, Wilesmith J, Desrosiers RC, Brookmeyer R. The evolution of virus diseases: their emergence, epidemicity, and control. Virus Res 1993; 29: 3–20. [DOI] [PubMed] [Google Scholar]
- 103. Nathanson N, Murphy FA. Evolution of viral diseases In Viral Pathogenesis, Nathanson N. (ed.). Lipincott‐Raven: Philadelphia, 1996. [Google Scholar]
- 104. Blom L, Nystrom L, Dahlquist G. The Swedish childhood diabetes study. Vaccinations and infections as risk determinants for diabetes in childhood. Diabetologia 1991; 34: 176–181. [DOI] [PubMed] [Google Scholar]
- 105. Juhela S, Hyoty H, Roivainen M, et al T‐cell responses to enterovirus antigens in children with type 1 diabetes. Diabetes 2000; 49: 1308–1313. [DOI] [PubMed] [Google Scholar]
- 106. Juhela S, Hyoty H, Uibo R, et al Comparison of enterovirus‐specific cellular immunity in two populations of young children vaccinated with inactivated or live poliovirus vaccines. Clin Exp Immunol 1999; 117: 100–105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107. Patterson CJ, Carson D, Hadden D, Waugh N, Cole S. A case‐control investigation of perinatal risk factors for childhood IDDM in Northern Ireland and Scotland. Diabetes Care 1994; 17: 376–381. [DOI] [PubMed] [Google Scholar]
- 108. Verge C, Howard N, Irwig L, Simpson J, Mackerras D, Silink M. Environmental factors in childhood IDDM: a population‐based, case‐control study. Diabetes Care 1994; 17: 1381–1389. [DOI] [PubMed] [Google Scholar]
- 109. Green A, Patterson C. Trends in the incidence of childhood‐onset diabetes in Europe 1989–1998. Diabetologia 2001; 44 (Suppl. 3): B3–B8. [DOI] [PubMed] [Google Scholar]
- 110. Onkama P, Vaananen S, Karvonen M, Tuomilehto J. Worldwide increase in incidence of type 1 diabetes—the analysis of the data on published incidence trends. Diabetologia 1999; 42: 1395–1403. [DOI] [PubMed] [Google Scholar]
- 111. Padaiga Z, Tuomilehto J, Karvonen M, et al Incidence trends in childhood onset IDDM in four countries around the Baltic sea during 1983–1992. Diabetologia 1997; 40: 187–192. [DOI] [PubMed] [Google Scholar]
- 112. Barclay RPC, Craig J, Galloway C, Richardson J, Shepherd R, Smail P. The incidence of childhood diabetes in certain parts of Scotland. Scot Med J 1988; 33: 237–239. [DOI] [PubMed] [Google Scholar]
- 113. Patterson CJ, Carson D, Hadden D. Epidemiology of childhood IDDM in Northern Ireland 1989–1994: Low incidence in areas with highest population density and most household crowding. Northern Ireland Diabetes Study Group. Diabetologia 1996; 39: 1063–1069. [DOI] [PubMed] [Google Scholar]
- 114. Kolb H, Elliott RB. Increasing incidence of IDDM a consequence of improved hygiene? Diabetologia 1994; 37: 729–731. [DOI] [PubMed] [Google Scholar]
- 115. Drescher KM, Tracy S. The CVB and etiology of type 1 diabetes. Curr Topics Microbiol Immunol 2008; 323: 259–274. [DOI] [PubMed] [Google Scholar]
- 116. Tracy S, Drescher KM. Coxsackievirus infections and NOD mice: relevant models of protection from, and induction of, type 1 diabetes. Ann N Y Acad Sci 2007; 1103: 143–151. [DOI] [PubMed] [Google Scholar]
- 117. von Herrath MG, Fujinami RS, Whitton J. Microorganisms and autoimmunity: making the barren field fertile? Nature Rev Microbiol 2003; 1: 151–157. [DOI] [PubMed] [Google Scholar]