Abstract
Genome sequences from several blood borne and respiratory viruses have recently been recovered directly from clinical specimens by variants of a technique known as sequence‐independent single primer amplification. This and related methods are increasingly being used to search for the causes of diseases of presumed infectious aetiology, but for which no agent has yet been found. Other methods that do not require prior knowledge of the genome sequence of any virus that may be present in the patient specimen include whole genome amplification, random PCR and subtractive hybridisation and differential display. This review considers the development and application of these techniques. Copyright © 2006 John Wiley & Sons, Ltd.
REFERENCES
- 1. Cotmore SF, Tattersall P. Characterisation and molecular cloning of a human parvovirus genome. Science 1984; 226: 1161–1165. [DOI] [PubMed] [Google Scholar]
- 2. Clewley JP. Detection of human parvovirus using a molecularly cloned probe. J Med Virol 1985; 15: 173–181. [DOI] [PubMed] [Google Scholar]
- 3. Choo Q‐L, Kuo G, Weiner A, Overby LR, Bradley DW, Houghton M. Isolation of a cDNA clone derived from a blood‐borne non‐A, non‐B viral hepatitis genome. Science 1989; 244: 359–362. [DOI] [PubMed] [Google Scholar]
- 4. Clewley JP, Lewis JCM, Brown DWG, Gadsby EL. A novel simian immunodeficiency virus (SIVdrl) pol sequence from the drill monkey, Mandrillus leucophaeus. J Virol 1998; 72: 10305–10309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Donehower LA, Bohannon RC, Ford RJ, Gibbs RA. The use of primers from highly conserved pol regions to identify uncharacterized retroviruses by the polymerase chain reaction. J Virol Meth 1990; 28: 33–46. [DOI] [PubMed] [Google Scholar]
- 6. Wichman HA, Van Den Bussche RA. In search of retrotransposons: exploring the potential of the PCR. BioTechniques 1992; 13: 258–264. [PubMed] [Google Scholar]
- 7. Muerhoff A, Leary T, Desai S, Mushahwar I. Amplification and subtraction methods and their application to the discovery of novel human viruses. J Med Virol 1997; 53: 96–103. [PubMed] [Google Scholar]
- 8. Reyes GR, Kim JP. Sequence‐independent, single‐primer amplification (SISPA) of complex DNA populations. Mol Cell Probes 1991; 5: 473–481. [DOI] [PubMed] [Google Scholar]
- 9. Matsui SM, Kim JP, Greenberg HB, et al The isolation and characterization of a Norwalk virus‐specific cDNA. J Clin Invest 1991; 87: 1456–1461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. Matsui SM, Kim JP, Greenberg HB, et al Cloning and characterization of human astrovirus immunoreactive epitopes. J Virol 1993; 67: 1712–1715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11. Linnen J, Wages J, Jr. , Zhang‐Keck Z‐Y, et al Molecular cloning and disease association of hepatitis G virus: a transfusion‐transmissible agent. Science 1996; 271: 505–508. [DOI] [PubMed] [Google Scholar]
- 12. Akowitz A, Manuelidis L. A novel cDNA/PCR strategy for efficient cloning of small amounts of undefined RNA. Gene 1989; 81: 295–306. [DOI] [PubMed] [Google Scholar]
- 13. Johnson DH. Molecular cloning of DNA from specific chromosomal regions by microdissection and sequence‐independent amplification of DNA. Genomics 1990; 6: 243–251. [DOI] [PubMed] [Google Scholar]
- 14. Lambden PR, Cooke SJ, Caul EO, Clarke IN. Cloning of noncultivatable human rotavirus by single primer amplification. J Virol 1992; 66: 1817–1822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Lambden PR, Clarke IN. Cloning of Viral Double‐Stranded RNA genomes by single primer amplification In Cloning of Viral Double‐Stranded RNA Genomes by Single Primer Amplification. Academic Press: Minneapolis, 1995; 359–372. [Google Scholar]
- 16. Chen Z, Lambden PR, Lau J, Caul EO, Clarke IN. Human group C rotavirus: completion of the genome sequence and gene coding assignments of a non‐cultivatable rotavirus. Virus Res 2002; 83: 179–187. [DOI] [PubMed] [Google Scholar]
- 17. Potgieter AC, Steele AD, van Dijk AA. Cloning of complete genome sets of six dsRNA viruses using an improved cloning method for large dsRNA genes. J Gen Virol 2002; 83: 2215–2223. [DOI] [PubMed] [Google Scholar]
- 18. Tsunemitsu H, Kamiyama M, Kawashima K, et al Molecular characterization of the major capsid protein VP6 of bovine group B rotavirus and its use in seroepidemiology. J Gen Virol 2005; 86: 2569–2575. [DOI] [PubMed] [Google Scholar]
- 19. Allander T, Emerson SU, Engle RE, Purcell RH, Bukh J. A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species. Proc Natl Acad Sci USA 2001; 98: 11609–11614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Allander T, Emerson SU, Purcell RH, Bukh J. Cloning of unknown virus sequences by DNase treatment and sequence independent single primer amplification In Cloning of Unknown Virus Sequences by DNase Treatment and Sequence Independent Single Primer Amplification. CRC Press: Boca Raton, 2004; 337–345. [Google Scholar]
- 21. Breitbart M, Rohwer F. Method for discovering novel DNA viruses in blood using viral particle selection and shotgun sequencing. Biotechniques 2005; 39: 729–736. [DOI] [PubMed] [Google Scholar]
- 22. Allander T, Tammi MT, Eriksson M, Bjerkner A, Lindell AT, Andersson B. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci USA 2005; 102: 12891–12896. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. van der Hoek L, Pyrc K, Jebbink MF, et al Identification of a new human coronavirus. Nature Med 2004; 10: 368–373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. Vreede FT, Cloete M, Napier GB, van Dijk AA, Viljoen GJ. Sequence‐independent amplification and cloning of large dsRNA virus genome segments by poly(dA)‐oligonucleotide ligation. J Virol Meth 1998; 72: 243–247. [DOI] [PubMed] [Google Scholar]
- 25. Jones MS, Kapoor A, Lukashov VV, Simmonds P, Hecht F, Delwart E. New DNA viruses identified in patients with acute viral infection syndrome. J Virol 2005; 79: 8230–8236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. Wang D, Coscoy L, Zylberberg M, et al Microarray‐based detection and genotyping of viral pathogens. Proc Natl Acad Sci USA 2002; 99: 15687–15692. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. Wang D, Urisman A, Liu Y‐T, et al Viral discovery and sequence recovery using DNA microarrays. PLoS Biology 2003; 1: e2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. Vora GJ, Meador CE, Stenger DA, Andreadis JD. Nucleic acid amplification strategies for DNA microarray‐based pathogen detection. Appl Environ Microbiol 2004; 70: 3047–3054. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. Reyes GR, Bradley DW, Lovett M. New strategies for isolation of low abundance viral and host cDNAs: application to cloning of the hepatitis E virus and analysis of tissue‐specific transcription. Sem Liver Dis 1992; 12: 289–300. [DOI] [PubMed] [Google Scholar]
- 30. Bachem CWB, van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RGF. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 1996; 9: 745–753. [DOI] [PubMed] [Google Scholar]
- 31. Vos P, Hogers R, Bleeker M, et al AFLP: a new technique for DNA fingerprinting. Nuc Acids Res 1995; 23: 4407–4414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32. Morgan JG, Dolganov GM, Robbins SE, Hinton LM, Lovett M. The selective isolation of novel cDNAs encoded by the regions surrounding the human interleukin 4 and 5 genes. Nuc Acids Res 1992; 20: 5173–5179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33. Shin S‐Y, Kim K‐S, Lee Y‐S, et al Identification of enteroviruses by using monoclonal antibodies against a putative common epitope. J Clin Microbiol 2003; 41: 3028–3034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34. Arnold C. Fluorescent amplified fragment length polymorphism (FAFLP) genotyping In Fluorescent Amplified Fragment Length Polymorphism (FAFLP) genotyping. CRC Press: Boca Raton, 2004; 155–161. [Google Scholar]
- 35. Money T, Reader S, Qu LJ, Dunford RP, Moore G. AFLP‐based mRNA fingerprinting. Nuc Acids Res 1996; 24: 2616–2617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36. Keim P, Kalif A, Schupp J, et al Molecular evolution and diversity in Bacillus anthracis as detected by amplified length polymorphism markers. J Bacteriol 1997; 179: 818–824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37. Arnold C, Metherell L, Willshaw G, Maggs A, Stanley J. Predictive fluorescent amplified‐fragment length polymorphism analysis of Escherichia coli: high‐resolution typing method with phylogenetic significance. J Clin Microbiol 1999; 37: 1274–1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. Froussard P. A random‐PCR method (rPCR) to construct whole cDNA library from low amounts of RNA. Nuc Acids Res 1992; 20: 2900. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39. Grothues D, Cantor CR, Smith CL. PCR amplification of megabase DNA with tagged random primers (T‐PCR). Nuc Acids Res 1993; 21: 1321–1322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40. Stang A, Korn K, Wildner O, Uberla K. Characterization of virus isolates by particle‐associated nucleic acid PCR. J Clin Microbiol 2005; 43: 716–720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41. Bohlander SK, Espinosa R, 3rd , Le Beau MM, Rowley JD, Diaz MO. A method for the rapid sequence‐independent amplification of microdissected chromosomal material. Genomics 1992; 13: 1322–1324. [DOI] [PubMed] [Google Scholar]
- 42. Dingle KE, Lambden PR, Caul EO, Clarke IN. Human enteric Caliciviridae: the complete genome sequence and expression of virus‐like particles from a genetic group II small round structured virus. J Gen Virol 1995; 76: 2349–2355. [DOI] [PubMed] [Google Scholar]
- 43. Liu BL, Lambden PR, Gunther H, Otto P, Elschner M, Clarke IN. Molecular characterization of a bovine enteric calicivirus: relationship to the Norwalk‐like viruses. J Virol 1999; 73: 819–825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44. Lisitsyn N, Lisitsyn N, Wigler M. Cloning the differences between two complex genomes. Science 1993; 259: 946–951. [DOI] [PubMed] [Google Scholar]
- 45. Chang Y, Cesarman E, Pessin MS, et al Identification of herpesvirus‐like DNA sequences in AIDS‐associated Kaposi's sarcoma. Science 1994; 266: 1865–1869. [DOI] [PubMed] [Google Scholar]
- 46. Simons JN, Pilot‐Matias TJ, Leary TP, et al Identification of two favivirus‐like genomes in the GB hepatitis agent. Proc Natl Acad Sci USA 1995; 92: 3401–3405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47. Nishizawa T, Okamoto H, Konishi K, Yoshizawa H, Miyakawa Y, Mayumi M. A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology. Biochem Biophys Res Commun 1997; 241: 92–97. [DOI] [PubMed] [Google Scholar]
- 48. Makrigiorgos GM, Chakrabarti S, Zhang Y, Kaur M, Price BD. A PCR‐based amplification method retaining the quantitative difference between two complex genomes. Nature Biotechnol 2002; 20: 936–939. [DOI] [PubMed] [Google Scholar]
- 49. Hu Y, Hirshfield I. Rapid approach to identify an unrecognized viral agent. J Virol Meth 2005; 127: 80–86. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50. Xu Y, Stange‐Thomann N, Weber G, et al Pathogen discovery from human tissue by sequence‐based computational subtraction. Genomics 2003; 81: 329–335. [DOI] [PubMed] [Google Scholar]
- 51. Venter JC, Remington K, Heidelberg JF, et al Environmental genome shotgun sequencing of the Sargasso Sea. Science 2004; 304: 66–74. [DOI] [PubMed] [Google Scholar]
- 52. Tyson GW, Chapman J, Hugenholtz P, et al Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 2004; 428: 37–43. [DOI] [PubMed] [Google Scholar]
- 53. Liang P, Pardee AB. (eds). Differential Display Methods and Protocols. Humana Press; Totowa, New Jersey, 1997. [Google Scholar]
- 54. Bosch I, Warke RV, Fournier MF, Magee D, Melichar H. Applications of differential display in infectious diseases In Applications of Differential Display in Infectious Diseases. CRC Press: Boca Raton, 2004; 277–285. [Google Scholar]
- 55. Fujiyuki T, Takeuchi H, Ono M, et al Novel insect picorna‐like virus identified in the brains of aggressive worker honeybees. J Virol 2004; 78: 1093–1100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56. Dean FB, Hosono S, Fang L, et al Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA 2002; 99: 5261–5266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57. Barker DL, Hansen MST, Faruqi AF, et al Two methods of whole‐genome amplification enable accurate genotyping across a 2320‐SNP linkage panel. Genome Res 2004; 14: 901–907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58. Lovmar L, Fredriksson M, Liljedahl U, Sigurdsson S, Syvanen A‐C. Quantitative evaluation by minisequencing and microarrays reveals accurate multiplexed SNP genotyping of whole genome amplified DNA. Nucl Acids Res 2003; 31: e129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59. Zhong XY, Li Y, Holzgreve W, Hahn S. Primer extension preamplification (PEP) of single cells: efficiency and bias In Primer Extension Preamplification (PEP) of Single Cells: Efficiency and Bias. CRC Press: Boca Raton, 2004; 361–368. [Google Scholar]
- 60. Van Gelder RN, von Zastrow ME, Yool A, Dement WC, Barchas JD, Eberwine JH. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci USA 1990; 87: 1663–1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61. Poirier GM, Erlander MG. Postdifferential display: parallel processing of candidates using small amounts of RNA. Methods 1998; 16: 444–452. [DOI] [PubMed] [Google Scholar]
- 62. Barreca C, O'Hare P. Suppression of herpes simplex virus 1 in MDBK cells via the interferon pathway. J Virol 2004; 78: 8641–8653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63. Lassnig C, Kolb A, Strobl B, Enjuanes L, Muller M. Studying human pathogens in animal models: Fine tuning the humanized mouse. Transgenic Res 2005; 14: 803–806. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64. Angly F, Rodriguez‐Brito B, Bangor D, et al PHACCS, an online tool for estimating the structure and diversity of uncultured viral communities using metagenomic information. BMC Bioinformatics 2005; 6: 41. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65. Ksiazek TG, Erdman D, Goldsmith CS, et al A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 2003; 348: 1953–1966. [DOI] [PubMed] [Google Scholar]
- 66. Boriskin YS, Rice PS, Stabler RA, et al DNA microarrays for virus detection in cases of central nervous system infection. J Clin Microbiol 2004; 42: 5811–5818. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67. Lin B, Vora GJ, Thach D, et al Use of oligonucleotide microarrays for rapid detection and serotyping of acute respiratory disease‐associated adenoviruses. J Clin Microbiol 2004; 42: 3232–3239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68. Korimbocus J, Scaramozzino N, Lacroix B, Crance JM, Garin D, Vernet G. DNA probe array for the simultaneous identification of herpesviruses, enteroviruses, and flaviviruses. J Clin Microbiol 2005; 43: 3779–3787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69. Conejero‐Goldberg C, Wang E, Yi C, et al Infectious pathogen detection arrays: viral detection in cell lines and postmortem brain tissue. Biotechniques 2005; 39: 741–751. [DOI] [PubMed] [Google Scholar]
- 70. Clewley JP. A role for arrays in clinical virology: fact or fiction? J Clin Virol 2004; 29: 2–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71. Fouchier RAM, Kuiken T, Schutten M, et al Aetiology: Koch's postulates fulfilled for SARS virus. Nature 2003; 423: 240–240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72. Osterhaus AD, Fouchier RA, Kuiken T. The aetiology of SARS: Koch's postulates fulfilled. Philos Trans R Soc Lond B Biol Sci 2004; 359: 1081–1082. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73. Burgoon MP, Keays KM, Owens GP, et al Laser‐capture microdissection of plasma cells from subacute sclerosing panencephalitis brain reveals intrathecal disease‐relevant antibodies. Proc Natl Acad Sci USA 2005; 102: 7245–7250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74. Gilden DH. Viruses and multiple sclerosis. J Am Med Assoc 2001; 286: 3127–3129. [DOI] [PubMed] [Google Scholar]
- 75. Reyes GR, Purdy MA, Kim JP, et al Isolation of a cDNA from the virus responsible for enterically transmitted non‐A, non‐B hepatitis. Science 1990; 247: 1335–1339. [DOI] [PubMed] [Google Scholar]
- 76. Tam AW, Smith MM, Guerra ME, et al Hepatitis E virus (HEV): molecular cloning and sequencing of the full‐ length viral genome. Virology 1991; 185: 120–131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77. Chang Y, Cesarman E, Pessin MS, et al Identification of herpesvirus‐like DNA sequences in AIDS‐associated Kaposi's sarcoma. Science 1994; 266: 1865–1869. [DOI] [PubMed] [Google Scholar]