Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2006 Jun 29;33(4):435–440. doi: 10.1111/j.1365-3083.1991.tb01792.x

Glycosylation is Required for Coronavirus TGEV to Induce an Efficient Production of IFNα by Blood Mononuclear Cells

B CHARLEY 1,, L LAVENANT 1, B DELMAS 1
PMCID: PMC7169555  PMID: 1850168

Abstract

Porcine peripheral blood mononuclear cells (PBMC) are induced to produce interferon alpha (IFNα) following in vitro exposure to coronavirus TGEV (transmissible gastroenteritis virus)‐infected glutaraldehyde‐fixed cell monolayers or lo TGEV virions. In the present report, we examined the possibility that glycosylation of viral proteins could play a major role in interactions with PBMC leading to the production of IFNα. Con A pretreatment of TGEV‐infected cell monolayers before fixation with glutaraldehyde and exposure to PBMC caused a dose‐dependent inhibition of IFNα induction, implying that masking of carbohydrates at the surface of infected cells lowered IFNα induction. Similarly, inhibition of N‐linked glycosylation by tunicamycin during viral infection of cell monolayers altered their ability to induce IFNα. In addition, complete cleavage of complex type' oligosaccharides by peptide‐N‐glycohydrolase Flowered the capacity of TGEV virions to induce IFNα. Thus, these findings strongly suggest that glycosylation of the viral proteins, and more precisely the presence of complex‐type oligosaccharides, is an important requirement for a completely efficient interaction with PBMC leading to the production of IFN‐α.

REFERENCES

  • 1. Bacnziger, J.U. & Fiete, D. Structural determinants of Concanavalin A specificity for oligosaccharides. J. Biol. Chem. 254, 2400, 1979. [PubMed] [Google Scholar]
  • 2. Capobianchi, M.R. , Facchini, J. , Di Marco, P. , Antonelli, G. & Dianzani, F. Induction of alpha interferon by membrane interaction between viral surface and peripheral blood mononuclear cells. Proc. Soc. Exp. Mol. Med. 178, 551, 1985. [DOI] [PubMed] [Google Scholar]
  • 3. Cederblad, B. & Aim, G.V. Infrequent but efficient interferon‐a‐producing human mononuclear leukocytes induced by Herpes Simplex Virus in vitro studies by immuno‐plaque and limiting dilution assays. J. Interferon Res. 10, 65, 1990. [DOI] [PubMed] [Google Scholar]
  • 4. Charley, B. & Laude, H. Induction of alpha interferon by transmissible gastroenteritis coronavirus: Role of transmembrane glycoprotein El. J. Virol. 62, 8, 1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Charley, B. & Lavenant, L. Characterization of blood mononuclear cells producing IFNα following induction by coronavirus‐infected cells (Porcine Transmissible Gastroenteritis Virus). Res. Immunol. 141, 141, 1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Delmas, B. & Laude, H. Assembly of coronavirus spike protein into trimers and its role in epitope expression. J. Virol. 64, 5367, 1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Dianzani, P. & Capobianchi, M.R. Mechanism of induction of alpha interferon. Pp. 21–30 in Baron S., Dianzani P., Stanton J. & Fleischmann W.R. (eds) The Interferon System. A Current Review to 1987. University of Texas Medical Branch Series in Biomedical Science , 1987.
  • 8. Elbein, A.D. Inhibitors of the biosynthesis and processing of N‐linked oligosaccharide chains. Ann. Rev. Biochem. 56, 497, 1987. [DOI] [PubMed] [Google Scholar]
  • 9. Fitzgerald‐Bocarsly, P. , Feldman, M. , Mendelsohn, M. , Curl, S. & Lopez, C. Human mononuclear cells which produce interferon‐alpha during NK (HSV‐FS) assays are HLA‐DR positive cells distinct from cytolytic Natural Killer effectors. J. Leuk. Biol. 43, 323, 1988. [DOI] [PubMed] [Google Scholar]
  • 10. Gaillard, C , Chilmonezyk, S. & de Kinkelin, P. Interferon synthesis induced by Viral Hemorrhagic Septicemia Virus (VHSV) in rainbow trout leukocytes in vitro. Proceedings of the XIIIth Fish Health Section American Fisheries Society Meeting p. 52, 1989.
  • 11. Gobl, A.E. , Funa, K. & Aim. G.V. Different induction patterns of mRNA for IFN‐α and β in human mononuclear leukocytes after in vitro stimulation with Herpes Simplex virus‐infected fibroblasts and Sendai virus. J. Immunol. 140, 3605, 1988. [PubMed] [Google Scholar]
  • 12. Ito, Y. , Nishiyama, Y. , Shimokata, K. , Nagata, J. , Takeyama, H. & Kunü, A. The mechanism of interferon induction in mouse spleen cells stimulated with HVJ. Virology 98, 128, 1978. [DOI] [PubMed] [Google Scholar]
  • 13. Kurane, I. , Meager, A. & Ennis. F.A. Induction of interferon alpha and gamma from human lymphocytes by Dengue virus‐infected cells. J. Gen. Virol. 67, 1653, 1986. [DOI] [PubMed] [Google Scholar]
  • 14. La Bonnardière, C. & Laude, H. High interferon titer in newborn pig intestine during experimentally induced viral enteritis. Inf. Immun. 32, 28, 1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Laude, H. , Chapsal, J.M. , Gelfi, J. , Labiau, S. & Grosclaude, J. Antigenic structure of transmissible gastroenteritis virus. I. Properties of monoclonal antibodies directed against virion proteins. J. Gen. Virol. 65, 119, 1986. [DOI] [PubMed] [Google Scholar]
  • 16. Laude, H. , Rasshaert, D. & Huet, J.C. Sequence and N‐terminal processing of the trans‐membrane protein E1 of the coronavirus transmissible gastroenteritis virus. J. Gen. Virol. 68, 1687, 1987. [DOI] [PubMed] [Google Scholar]
  • 17. Lebon, P. , Commoy‐Chevalier, M.J. , Robert‐Calliot & Chany, C. Different mechanisms for α and β interferon induction. Virology 119, 504, 1982. [DOI] [PubMed] [Google Scholar]
  • 18. Lebon, P. , Bernard, A. & Boumsell, L. Human lymphocytes involved in α‐interferon production can be identified by monoclonal antibodies directed against cell surface antigens. C.R. Acad. Sci. Paris 295, 79, 1982. [PubMed] [Google Scholar]
  • 19. Lebon, P. , Inhibition of Herpes Simplex virus type I‐induced interferon synthesis by monoclonal antibodies against viral glycoprotein D and by lysosomotropic drugs. J. Gen. Virol. 66, 2781, 1985. [DOI] [PubMed] [Google Scholar]
  • 20. Machamer, C.E. , Florkiewiez, R.Z. & Rose, J.K. A single N‐linked oligosaccharide at either of the two normal sites is sufficient for transport of vesicular stomatitis virus G protein to the cell surface. Mol. Cell. Biol. 5, 3074, 1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Oh, S.H. , Bandyopadhyay, S. , Miller, D.S. & Starr, S.E. Cooperation between CD16(Leu‐IIb)+NK cells and HLA‐DR+cells in Natural Killing of Herpesvirus‐infected fibroblasts. J. Immunol. 139, 2799, 1987. [PubMed] [Google Scholar]
  • 22. Peter, H.J. , Dalligge, H. , Zawatzky, R. , Euler, S. , Leibold, W. & Kirchner, H. Human peripheral null lymphocytes. IL Producers of type 1 interferon upon stimulation with tumor cells, herpes simplex virus and Corynebacterium parvum. Eur. J. Immunol. 10, 547, 1980. [DOI] [PubMed] [Google Scholar]
  • 23. Rönnblom, L. , Cederblad, B. , Sandberg, K. & Aim, G.V. Determination of Herpes Simplex Virus‐induced alpha interferon‐secreting human blood leucocytes by a filter immuno‐ plaque assay. Scand. J. Immunol 27, 165, 1988. [DOI] [PubMed] [Google Scholar]
  • 24. Sandberg, K. , Matsson, P. & Alm, G.V. A distinct population of nonphagocytic and low level CD4+null lymphocytes produce IFN‐α after stimulation by Herpes. Simplex Virus‐infected cells. J. Immunol. 145, 1015, 1990. [PubMed] [Google Scholar]
  • 25. Springer, T.A. Adhesion receptors of the immune system. Nature 346, 425, 1990. [DOI] [PubMed] [Google Scholar]
  • 26. Sutton, C. Lectin affinity chromatography Pp. 268–282 in Harris E.L.V. & Angal S. (eds) Protein Purification Methods, a Practical. Approach. IRL Press; Oxford . 1989. [Google Scholar]
  • 27. Tarentino, A.L. , Trimble, R.B. & Plummer, T.H. Enzymatic approaches for studying the structure, synthesis, and processing of glycoproteins. Methods in Celt Biol. 32, 111, 1989. [DOI] [PubMed] [Google Scholar]

Articles from Scandinavian Journal of Immunology are provided here courtesy of Wiley

RESOURCES