Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2006 Jan 17;6(1):5–18. doi: 10.1002/sita.200500061

Hypothesized and found mechanisms for potentiation of bradykinin actions

Sylvia Mueller 1, Inge Paegelow 2, Siegmund Reissmann
PMCID: PMC7169587  PMID: 32327962

Abstract

Potentiation of hormone actions can occur by different mechanisms, including inhibition of degrading enzymes, interaction with the hormone receptor leading to stabilization of bioactive conformation or leading to receptor homo‐ and hetero‐oligomerization, receptor phosphorylation and dephosphorylation or can occur by directly influencing the signal transduction and ion channels. In this review the potentiation of bradykinin actions in different systems by certain compounds will be reviewed. Despite many long years of experimental research and investigation the mechanisms of potentiating action remain not fully understood. One of the most contradictory findings are the distinct differences between the inhibition of the angiotensin I‐converting enzyme and the potentiation of the bradykinin induced smooth muscle reaction. Contradictory findings and hypothesized mechanisms in the literature are discussed in this review and in some cases compared to own results. Investigation of potentiating actions was extended from hypotension, smooth muscle reaction and cellular actions to activation of immunocompetent cells. In our opinion the potentiation of bradykinin action can occur by different mechanisms, depending on the system and the applied potentiating factor used.

Keywords: Potentiation, Bradykinin B1 and B2 receptors, Angiotensin I‐converting enzyme, Crosstalk, Polymorphonuclear leukocytes

References

  • [1]. Genin, M.J. , Mishra, R.K. , Johnson, R.L. (1993) Dopamine receptor modulation by a highly rigid spiro bicyclic peptidomimetic of Pro‐Leu‐Gly‐NH2. J. Med. Chem. 36: 3481–3483. [DOI] [PubMed] [Google Scholar]
  • [2]. Ladram, A. , Montagne, J.J. , Bulant, M. , Nicolas, P. (1994) Analysis of structural requirements for TRH‐potentiating peptide receptor binding by analogue design. Peptides 15: 429–433. [DOI] [PubMed] [Google Scholar]
  • [3]. Sellitti, D.F. , Doi, S.Q. (1994) C‐type natriuretic peptide (CNP) increases [125I]ANF binding to FRTL‐5 rat thyroid cells by increasing ANF receptor affinity. Peptides 15: 1249–1253. [DOI] [PubMed] [Google Scholar]
  • [4]. Rocha e Silva, M. , Reis, M.L. , Ferreira, S.H. (1976) Release of kinins from fresh plasma under varying experimental conditions. Biochem. Pharmacol. 16: 1665–1676. [DOI] [PubMed] [Google Scholar]
  • [5]. Kato, H. , Suzuki, T. (1969) Bradykinin‐potentiating peptides from the venom of Agkistrodon halys blomhoffii. Experientia 25: 694–695. [DOI] [PubMed] [Google Scholar]
  • [6]. Kato, H. , Suzuki, T. (1971) Bradykinin‐potentiating peptides from the venom of Agkistrodon halys blomhoffii. Isolation of five bradykinin potentiators and the amino acid sequences of two of them, potentiators B and C. Biochemistry 10: 972–980. [DOI] [PubMed] [Google Scholar]
  • [7]. Ferreira, S.H. (1965) A Bradykinin‐Potentiating Factor (Bpf) Present in the Venom of Bothrops jararaca. Br. J. Pharmacol. 24: 163–169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8]. Ferreira, S.H. , Bartelt, D.C. , Greene, L.J. (1970) Isolation of bradykinin‐potentiating peptides from Bothrops jararaca venom. Biochemistry 9: 2583–2593. [DOI] [PubMed] [Google Scholar]
  • [9]. Cushman, D.W. , Pluscec, J. , Williams, N.J. , Weaver, E.R. , Sabo, E.F. , Kocy, O. , Cheung, H.S. , Ondetti, M.A. (1973) Inhibition of angiotensin‐converting enzyme by analogs of peptides from Bothrops jararaca venom. Experientia 29: 1032–1035. [DOI] [PubMed] [Google Scholar]
  • [10]. Ondetti, M.A. , Williams, N.J. , Sabo, E.F. , Pluscec, J. , Weaver, E.R. , Kocy, O. (1971) Angiotensin‐converting enzyme inhibitors from the venom of Bothrops jararaca. Isolation, elucidation of structure, and synthesis. Biochemistry 10: 4033–4039. [DOI] [PubMed] [Google Scholar]
  • [11]. Cintra, A.C. , Vieira, C.A. , Giglio, J.R. (1990) Primary structure and biological activity of bradykinin potentiating peptides from Bothrops insularis snake venom. J. Protein Chem. 9: 221–227. [DOI] [PubMed] [Google Scholar]
  • [12]. Ferreira, L.A. , Henriques, O.B. , Lebrun, I. , Batista, M.B. , Prezoto, B.C. , Andreoni, A.S. , Zelnik, R. , Habermehl, G. (1992) A new bradykinin‐potentiating peptide (peptide P) isolated from the venom of Bothrops jararacussu (jararacucu tapete, urutu dourado). Toxicon 30: 33–40. [DOI] [PubMed] [Google Scholar]
  • [13]. Ferreira, L.A. , Galle, A. , Raida, M. , Schrader, M. , Lebrun, I. , Habermehl, G. (1998) Isolation: analysis and properties of three bradykinin‐potentiating peptides (BPP‐II, BPP‐III, and BPP‐V) from Bothrops neuwiedi venom. J. Protein Chem. 17: 285–289. [DOI] [PubMed] [Google Scholar]
  • [14]. Chi, C.W. , Wang, S.Z. , Xu, L.G. , Wang, M.Y. , Lo, S.S. , Huang, W.D. (1985) Structure‐function studies on the bradykinin potentiating peptide from Chinese snake venom (Agkistrodon halys Pallas). Peptides 6 Suppl. 3: 339–342. [PubMed] [Google Scholar]
  • [15]. Ferreira, L.A. , Mollring, T. , Lebrun, F.L. , Raida, M. , Znottka, R. , Habermehl, G.G. (1995) Structure and effects of a kinin potentiating fraction F (AppF) isolated from Agkistrodon piscivorus piscivorus venom. Toxicon 33: 1313–1319. [DOI] [PubMed] [Google Scholar]
  • [16]. L'vov, V.M. , Yukel'son, L.Y. (1995) Bradykinin‐potentiating Peptides from Echis multisquamatus venom. Khim. Prir. Soedin. 1: 435–440. [Google Scholar]
  • [17]. Ferreira, L.A. , Alves, E.W. , Henriques, O.B. (1993) Peptide T, a novel bradykinin potentiator isolated from Tityus serrulatus scorpion venom. Toxicon 31: 941–947. [DOI] [PubMed] [Google Scholar]
  • [18]. Meki, A.R. , Nassar, A.Y. , Rochat, H. (1995) A bradykinin‐potentiating peptide (peptide K12) isolated from the venom of Egyptian scorpion Buthus occitanus. Peptides 16: 1359–1365. [DOI] [PubMed] [Google Scholar]
  • [19]. Zeng, X.C. , Li, W.X. , Peng, F. , Zhu, Z.H. (2000) Cloning and characterization of a novel cDNA sequence encoding the precursor of a novel venom peptide (BmKbpp) related to a bradykinin‐potentiating peptide from Chinese scorpion Buthus martensii Karsch. IUBMB Life 49: 207–210. [DOI] [PubMed] [Google Scholar]
  • [20]. Sosnina, N.A. , Golubenko, Z. , Akhunov, A.A. , Kugaevskaia, E.V. , Eliseeva Iu, E. , Orekhovich, V.N. (1990) Bradykinin‐potentiating peptides from the spider Latrodectus tredecimguttatus–inhibitors of carboxycathepsin and of a preparation of karakurt venom kininase. Dokl. Akad. Nauk. SSSR 315: 236–239. [PubMed] [Google Scholar]
  • [21]. Akchunov, A.A. , Golubenko, Z. , Sosnina, N. (1992) Isolation and characterization of biological properties of inhibitors angiotensin‐1‐converting enzyme from the spider venom Latrodectus tredecimguttatus. Agents Actions Suppl. 38 (Pt 1): 469–474. [DOI] [PubMed] [Google Scholar]
  • [22]. Ferreira, L.A. , Alves, W.E. , Lucas, M.S. , Habermehl, G.G. (1996) Isolation and characterization of a bradykinin potentiating peptide (BPP‐S) isolated from Scaptocosa raptoria venom. Toxicon 34: 599–603. [DOI] [PubMed] [Google Scholar]
  • [23]. Yamafuji, K. , Taniguchi, Y. , Sakamoto, E. (1996) The thiol enzyme from rat spleen that produces bradykinin potentiating peptide from rat plasma. Immunopharmacology 32: 157–159. [DOI] [PubMed] [Google Scholar]
  • [24]. Sakamoto, E. , Sakao, Y. , Taniguchi, Y. , Yamafuji, K. (1999) Cathepsin Y (a novel thiol enzyme) produces kinin potentiating peptide from the component protein of rat plasma. Immunopharmacology 45: 207–214. [DOI] [PubMed] [Google Scholar]
  • [25]. Rodrigues, M.S. , Schaffel, R. , Assreuy, J. (1992) Comparative study on the mechanism of bradykinin potentiation induced by bradykinin‐potentiating peptide 9a, enalaprilat and kinin‐potentiating peptide. Eur. J. Pharmacol. 216: 357–362. [DOI] [PubMed] [Google Scholar]
  • [26]. Fernandes, P.D. , Guimaraes, J.A. , Assreuy, J. (1991) Comparative effects of two potentiating peptides (KPP and BPP) on kinin‐induced rat paw edema. Agents Actions 32: 182–187. [DOI] [PubMed] [Google Scholar]
  • [27]. Assreuy, J. , Almeida, A.A. , Guimaraes, J.A. (1989) Pharmacological properties of a new kinin‐potentiating peptide generated from human serum proteins. Eur. J. Pharmacol. 168: 231–237. [DOI] [PubMed] [Google Scholar]
  • [28]. Piot, J.M. , Zhao, Q. , Guillochon, D. , Ricart, G. , Thomas, D. (1992) Isolation and characterization of a bradykinin‐potentiating peptide from a bovine peptic hemoglobin hydrolysate. FEBS Lett. 299: 75–79. [DOI] [PubMed] [Google Scholar]
  • [29]. Ivanov, V.T. , Karelin, A.A. , Philippova, M.M. , Nazimov, I.V. , Pletnev, V.Z. (1997) Hemoglobin as a source of endogenous bioactive peptides: The concept of tissue‐specific peptide pool. Biopolymers (Peptide Science) 43: 171–188. [DOI] [PubMed] [Google Scholar]
  • [30]. Zhao, Q. , Garreau, I. , Sannier, F. , Piot, J.M. (1997) Opioid peptides derived from hemoglobin: hemorphins. Biopolymers (Peptide Science) 43: 75–98. [DOI] [PubMed] [Google Scholar]
  • [31]. Lignot, B. , Froidevaux, R. , Nedjar‐Arroume, N. , Guillochon, D. (1999) Solvent effect on kinetics of appearance of neokyotorphin, VV‐haemorphin‐4 and a bradykinin‐potentiating peptide in the course of peptic hydrolysis of bovine haemoglobin. Biotechnol. Appl. Biochem. 30 (Pt 3): 201–207. [PubMed] [Google Scholar]
  • [32]. Henriques, O.B. , de Deus, R.B. , Santos, R.A. (1987) Bradykinin potentiating peptides isolated from alpha‐casein tryptic hydrolysate. Biochem. Pharmacol. 36: 182–184. [DOI] [PubMed] [Google Scholar]
  • [33]. Lebrun, I. , Lebrun, F.L. , Henriques, O.B. , Carmona, A.K. , Juliano, L. , Camargo, A.C. (1995) Isolation and characterization of a new bradykinin potentiating octapeptide from gamma‐casein. Can. J. Physiol. Pharmacol. 73: 85–91. [DOI] [PubMed] [Google Scholar]
  • [34]. Matsui, T. , Li, C.H. , Osajima, Y. (1999) Preparation and characterization of novel bioactive peptides responsible for angiotensin I‐converting enzyme inhibition from wheat germ. J. Pept. Sci. 5: 289–297. [DOI] [PubMed] [Google Scholar]
  • [35]. Paula, R.D. , Lima, C.V. , Britto, R.R. , Campagnole‐Santos, M.J. , Khosla, M.C. , Santos, R.A. (1999) Potentiation of the hypotensive effect of bradykinin by angiotensin‐(1‐7)‐related peptides. Peptides 20: 493–500. [DOI] [PubMed] [Google Scholar]
  • [36]. Chaturvedi, D. , Huelar, E. , Gunthorpe, M. , Gofman, M. , Krapf, D.S. , Apostol, E. , Lewis, W.S. (1993) Bradykinin analogs as inhibitors of angiotensin‐converting enzyme. Pept. Res. 6: 308–312. [PubMed] [Google Scholar]
  • [37]. Schumann, C. , Seyfarth, L. , Greiner, G. , Paegelow, I. , Reissmann, S. (2002) Synthesis and biological activities of new side chain and backbone cyclic bradykinin analogues. J. Pept. Res. 60: 128–140. [DOI] [PubMed] [Google Scholar]
  • [38]. Cirstea, M. (1965) Potentiation of some bradykinin effects by thiol compounds. Br. J. Pharmacol. Chemother. 25: 405–410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [39]. Auerswald, W. , Doleschel, W. (1967) On the potentiation of kinins by sulfhydrylic compounds. Arch. Int. Pharmacodyn. Ther. 168: 188–198. [PubMed] [Google Scholar]
  • [40]. Hall, D.W. , Bonta, I.L. (1974) Potentiation of the biphasic bradykinin response of the guinea‐pig ileum. Arch. Int. Pharmacodyn. Ther. 207: 361–372. [PubMed] [Google Scholar]
  • [41]. Higuchi, S. , Murayama, N. , Saguchi, K. , Ohi, H. , Fujita, Y. , Camargo, A.C. , Ogawa, T. , Deshimaru, M. , Ohno, M. (1999) Bradykinin‐potentiating peptides and C‐type natriuretic peptides from snake venom. Immunopharmacology 44: 129–135. [DOI] [PubMed] [Google Scholar]
  • [42]. Hayashi, M.A. , Murbach, A.F. , Ianzer, D. , Portaro, F.C. , Prezoto, B.C. , Fernandes, B.L. , Silveira, P.F. , Silva, C.A. , Pires, R.S. , Britto, L.R. , Dive, V. , Camargo, A.C. (2003) The C‐type natriuretic peptide precursor of snake brain contains highly specific inhibitors of the angiotensin‐converting enzyme. J. Neurochem. 85: 969–977. [DOI] [PubMed] [Google Scholar]
  • [43]. Ianzer, D. , Konno, K. , Marques‐Porto, R. , Vieira Portaro, F.C. , Stocklin, R. , Martins de Camargo, A.C. , Pimenta, D.C. (2004) Identification of five new bradykinin potentiating peptides (BPPs) from Bothrops jararaca crude venom by using electrospray ionization tandem mass spectrometry after a two‐step liquid chromatography. Peptides 25: 1085–1092. [DOI] [PubMed] [Google Scholar]
  • [44]. Gavras, I. , Gavras, H. (2002) Metabolic effects of angiotensin‐converting enzyme inhibition: the role of bradykinin. Curr. Opin. Endocrinol. Diabetes 9: 323–328. [Google Scholar]
  • [45]. Kudoh, A. , Dietze, G.J. , Rabito, S.F. (2000) Insulin enhances the bradykinin response in L8 rat skeletal myoblasts. Diabetes 49: 190–194. [DOI] [PubMed] [Google Scholar]
  • [46]. Kudoh, A. , Kudoh, E. , Katagai, H. , Takazawa, T. (2002) Insulin potentiates bradykinin‐induced inositol 1,4,5‐triphosphate in neonatal rat cardiomyocytes. J. Cardiovasc. Pharmacol. 39: 621–627. [DOI] [PubMed] [Google Scholar]
  • [47]. Minshall, R.D. , Nedumgottil, S.J. , Igic, R. , Erdös, E.G. , Rabito, S.F. (2000) Potentiation of the effects of bradykinin on its receptor in the isolated guinea pig ileum. Peptides 21: 1257–1264. [DOI] [PubMed] [Google Scholar]
  • [48]. Dendorfer, A. , Reissmann, S. , Wolfrum, S. , Raasch, W. , Dominiak, P. (2001) Potentiation of kinin analogues by ramiprilat is exclusively related to their degradation. Hypertension 38: 142–146. [DOI] [PubMed] [Google Scholar]
  • [49]. Hecker, M. , Bara, A.T. , Busse, R. (1996) Potentiation of the biological efficacy of bradykinin by ACE inhibitors: a shift in the affinity of the B2 receptor? Immunopharmacology 33: 93–94. [DOI] [PubMed] [Google Scholar]
  • [50]. Norman, M.U. , Lew, R.A. , Smith, A.I. , Hickey, M.J. (2003) Metalloendopeptidases EC 3.4.24.15/16 regulate bradykinin activity in the cerebral microvasculature. Am. J. Physiol. Heart. Circ. Physiol. 284: H1942–1948. [DOI] [PubMed] [Google Scholar]
  • [51]. Tom, B. , de Vries, R. , Saxena, P.R. , Danser, A.H. (2001) Bradykinin potentiation by angiotensin‐(1‐7) and ACE inhibitors correlates with ACE C‐ and N‐domain blockade. Hypertension 38: 95–99. [DOI] [PubMed] [Google Scholar]
  • [52]. Minshall, R.D. , Tan, F. , Nakamura, F. , Rabito, S.F. , Becker, R.P. , Marcic, B. , Erdös, E.G. (1997) Potentiation of the actions of bradykinin by angiotensin I‐converting enzyme inhibitors. The role of expressed human bradykinin B2 receptors and angiotensin I‐converting enzyme in CHO cells. Circ. Res. 81: 848–856. [DOI] [PubMed] [Google Scholar]
  • [53]. Marcic, B. , Deddish, P.A. , Jackman, H.L. , Erdös, E.G. (1999) Enhancement of bradykinin and resensitization of its B2 receptor. Hypertension 33: 835–843. [DOI] [PubMed] [Google Scholar]
  • [54]. Ignjatovic, T. , Tan, F. , Brovkovych, V. , Skidgel, R.A. , Erdös, E.G. (2002) Activation of bradykinin B1 receptor by ACE inhibitors. Int. Immunopharmacol. 2: 1787–1793. [DOI] [PubMed] [Google Scholar]
  • [55]. Deddish, P.A. , Marcic, B.M. , Tan, F. , Jackman, H.L. , Chen, Z. , Erdös, E.G. (2002) Neprilysin inhibitors potentiate effects of bradykinin on B2 receptor. Hypertension 39: 619–623. [DOI] [PubMed] [Google Scholar]
  • [56]. Jaeger, P. , Ferguson, R.K. , Brunner, H.R. , Kirchertz, E.J. , Gavras, H. (1978) Mechanism of blood pressure reduction by teprotide (SQ 20881) in rats. Kidney Int. 13: 289–296. [DOI] [PubMed] [Google Scholar]
  • [57]. Boels, K. , Schaller, H.C. (2003) Identification and characterization of GPR100 as a novel human G‐protein‐coupled bradykinin receptor. Br. J. Pharmacol. 140: 932–938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [58]. Meini, S. , Bellucci, F. , Cucchi, P. , Giulani, S. , Quartara, L. , Giolitti, A. , Zappitelli, S. , Rotondaro, L. , Boels, K. , Maggi, C.A. (2004) Bradykinin and GPR100 receptors: a paradigm for receptor signal transduction pharmacology. Br. J. Pharmacol. 143: 938–941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [59]. Leeb‐Lundberg, F.L.M. (2004) Bradykinin specificity and signaling at GPR100 and B2 kinin receptors. Br. J. Pharmacol. 143: 931–932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [60]. Chan, D. , Gera, L. , Stewart, J. , Helfrich, B. , Verella‐Garcia, M. , Johnson, G. , Baron, A. , Yang, J. , Puck, T. , Bunn, P. Jr. , (2002) Bradykinin antagonist dimer, CU201, inhibits the growth of human lung cancer cell lines by a“biased agonist” mechanism. Proc. Natl. Acad. Sci. U.S.A. 99: 4608–4613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [61]. AbdAlla, S. , Lother, H. , Quitterer, U. (2000) AT1‐receptor heterodimers show enhanced G‐protein activation and altered receptor sequestration. Nature 407: 94–98. [DOI] [PubMed] [Google Scholar]
  • [62]. Paegelow, I. , Reissmann, S. , Arold, H. (1976) The effect of bradykinin potentiating factors (BPF) on bradykinin in vitro. Acta Biol. Med. Ger. 35(2): 235–244. [PubMed] [Google Scholar]
  • [63]. Ferry, X. , Brehin, S. , Kamel, R. , Landry, Y. (2002) G protein‐dependent activation of mast cell by peptides and basic secretagogues. Peptides 23: 1507–1515. [DOI] [PubMed] [Google Scholar]
  • [64]. Bueb, J.L. , Mousli, M. , Bronner, C. , Rouot, B. , Landry, Y. (1990) Activation of Gi‐like proteins, a receptor‐independent effect of kinins in mast cells. Mol. Pharmacol. 38: 816–822. [PubMed] [Google Scholar]
  • [65]. Klinker, J.F. , Hageluken, A. , Grunbaum, L. , Seifert, R. (1995) Direct and indirect receptor‐independent G‐protein activation by cationic‐amphiphilic substances. Exp. Dermatol. 4: 231–239. [DOI] [PubMed] [Google Scholar]
  • [66]. Odagaki, Y. , Nishi, N. , Nakagawa, S. , Koyama, T. (1999) Activation of G proteins by neuropeptide Y and gamma‐aminobutyric acid(B) receptor agonists in rat cerebral cortical membranes through distinct modes of action. J. Pharmacol. Exp. Ther. 291: 1250–1256. [PubMed] [Google Scholar]
  • [67]. Zhu, J. , Toews, M.L. , MacDonald, R.G. , Hexum, T.D. (1994) Neuropeptide Y promotes GTP photo‐incorporation into a 55 kDa protein. Eur. J. Pharmacol. 268: 279–291. [DOI] [PubMed] [Google Scholar]
  • [68]. Higashijima, T. , Burnier, J. , Ross, E.M. (1990) Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity. J. Biol. Chem. 265: 14176–14186. [PubMed] [Google Scholar]
  • [69]. Gies, J.P. , Landry, Y. , Mousli, M. (1993) Receptor‐independent activation of mast cells by bradykinin and related peptides. Trends Neurosci 16: 498–499. [DOI] [PubMed] [Google Scholar]
  • [70]. Wei, L. , Alhenc‐Gelas, F. , Corvol, P. , Clauser, E. (1991) The two homologous domains of human angiotensin I‐converting enzyme are both catalytically active. J. Biol. Chem. 266: 9002–9008. [PubMed] [Google Scholar]
  • [71]. Deddish, P.A. , Marcic, B. , Jackman, H.L. , Wang, H.Z. , Skidgel, R.A. , Erdös, E.G. (1998) N‐domain‐specific substrate and C‐domain inhibitors of angiotensin‐converting enzyme: angiotensin‐(1‐7) and keto‐ACE. Hypertension 31: 912–917. [DOI] [PubMed] [Google Scholar]
  • [72]. Cotton, J. , Hayashi, M.A. , Cuniasse, P. , Vazeux, G. , Ianzer, D. , De Camargo, A.C. , Dive, V. (2002) Selective inhibition of the C‐domain of angiotensin I converting enzyme by bradykinin potentiating peptides. Biochemistry 41: 6065–6071. [DOI] [PubMed] [Google Scholar]
  • [73]. Natesh, R. , Schwager, S.L.U. , Sturrock, E.D. , Acharya, K.R. (2003) Crystal structure of the human angiotensin‐converting enzyme‐lisinopril complex. Nature 421: 551–554. [DOI] [PubMed] [Google Scholar]
  • [74]. Ehlers, M.R.W. , Fox, E.A. , Strydom, D.J. , Riordan, J.F. (1989) Molecular cloning of the human testicular angiotensin‐converting enzyme. Proc. Natl. Acad. Sci. U.S.A. 86: 7741–7745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [75]. Warner, F.J. , Guy, J.L. , Lambert, D.W. , Hooper, N.M. , Turner, A.J. (2003) Angiotensin converting enzyme‐2 (ACE2) and its possible roles in hypertension, diabetes and cardiac function. LIPS 10: 377–385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [76]. Li, W. , Moore, M.J. , Vasilieva, N. , Sui, J. , Wong, S.K. , Berne, M.A. , Somasundaran, M. , Sullivan, J.L. , Luzuriaga, K. , Greenough, T.C. , Choe, H. , Farzan, M. (2003) Angiotensin‐converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426: 450–454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [77]. Hecker, M. , Blaukat, A. , Bara, A.T. , Müller‐Esterl, W. , Busse, R. (1997) ACE inhibitor potentiation of bradykinin‐induced venoconstriction. Br. J. Pharmacol. 121: 1475–1481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [78]. Ufkes, J.G. , Aarsen, P.N. , van der Meer, C. (1977) The mechanism of action of two bradykinin‐potentiating peptides on isolated smooth muscle. Eur. J. Pharmacol. 44: 89–97. [DOI] [PubMed] [Google Scholar]
  • [79]. Ufkes, J.G. , Visser, B.J. , Heuver, G. , Van der Meer, C. (1978) Structure‐activity relationships of bradykinin potentiating peptides. Eur. J. Pharmacol. 50: 119–122. [DOI] [PubMed] [Google Scholar]
  • [80]. Reissmann, S. , Paegelow, I. , Filatova, M.P. , Krit, N.A. , Arold, H. (1985) Synthesis and effect of affinity‐labeled analogs and partial sequences of the bradykinin potentiating nonapeptide BPP9 alpha (teprotide). Pharmazie 40 (5): 314–317. (German) [PubMed] [Google Scholar]
  • [81]. Marcic, B. , Deddish, P.A. , Skidgel, R.A. , Erdös, E.G. , Minshall, R.D. , Tan, F. (2000) Replacement of the transmembrane anchor in angiotensin I‐converting enzyme (ACE) with a glycosylphosphatidylinositol tail affects activation of the B2 bradykinin receptor by ACE inhibitors. J. Biol. Chem. 275: 16110–16118. [DOI] [PubMed] [Google Scholar]
  • [82]. Filatova, M.P. , Krit, N.A. , Beschastnaya, N.V. , Blokhina, A.V. , Kozlova, N.I. , Pavlikhina, L.V. , Eliseeva, Yu.E. , Orekhovich, V.N. , Reissmann, S. , Paegelow, I. (1985) Synthesis and biological activity of analogs of peptidyl dipeptidase nonapeptide inhibitor. Bioorg. Khim. 11(1): 21–30. [PubMed] [Google Scholar]
  • [83]. Reissmann, S. , Filatova, M.P. (1987) Synthesis and biological activity of analogues of the Bradykinin potentiating nonapeptide with substitution of the proline residues. Z. Chem. 27(4): 147–148. [Google Scholar]
  • [84]. Reissmann, S. , Filatova, M.P. , Krit, N.A. , Aleksandrova, T.A. , Birckner, E. , Friedrich, M. , Fric, I. , Paegelow, I. , Siems, W.‐E. , Heder, G. , Arold, H. (1985) Structure‐conformation‐activity relationship of the bradykinin potentiating peptide BPP In Proceedings of the 16th FEBS congress, Part B. Eds. Ovchinnikov, Yu. A., VNU science press, Utrecht (Neth), pp. 449–455.
  • [85]. Reissmann, S. , Filatova, M.P. , Fric, I. , Krit, N.A. , Birckner, E. , Aleksandrova, T.A. , Friedrich, M. , Kneipp, K. , Arold, H. (1984) Complex studies on the spatial structure of bradykinin potentiating peptide BPP9 In Proceedings of the Third Symposium Optical Spectroscopy, Teubner Texte zur Physik Band 4, B.G. Teubner Verlagsgesellschaft, Leipzig (DDR).
  • [86]. Mueller, S. , Gothe, R. , Siems, W.‐D. , Vietinghoff, G. , Paegelow, I. , Reissmann, S. (2005) Potentiation of bradykinin actions by analogues of the bradykinin potentiating peptide BPP. Peptides 26: 1235–1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [87]. Farmer, S.G. , Powell, S.J. , Wilkins, D.E. , Graham, A. (1998) Cloning, sequencing and functional expression of a guinea pig lung bradykinin B2 receptor. Eur. J. Pharmacol. 346: 291–298. [DOI] [PubMed] [Google Scholar]
  • [88]. Ibarra‐Rubio, M.E. , Pena, J.C. , Pedraza‐Chaverri, J. (1989) Kinetic and inhibitory characteristics of serum angiotensin‐converting enzyme from nine mammalian species. Comp. Biochem. Physiol. 92B: 399–403. [DOI] [PubMed] [Google Scholar]
  • [89]. Hellberg, S. , Sjostrom, M. , Wold, S. (1986) The prediction of bradykinin potentiating potency of pentapeptides. An example of a peptide quantitative structure‐activity relationship. Acta Chem. Scand. B 40: 135–140. [DOI] [PubMed] [Google Scholar]
  • [90]. Norinder, U. (1991) Theoretical amino acid descriptors. Application to bradykinin potentiating peptides. Peptides 12: 1223–1227. [DOI] [PubMed] [Google Scholar]
  • [91]. Lin, Z. , Wu, Y. , Quan, X. , Zhou, Y. , Ni, B. , Wan, Y. (2003) Use of a novel electrotopological descriptor for the prediction of biological activity of peptide analogues. LIPS 9 (6): 273–281. [Google Scholar]
  • [92]. Cushman, D.W. , Cheung, H.S. , Sabo, E.F. , Ondetti, M.A. (1977) Design of potent competitive inhibitors of angiotensin‐converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry 16: 5484–5491. [DOI] [PubMed] [Google Scholar]
  • [93]. Patchett, A.A. , Harris, E. , Tristram, E.W. , Wyvratt, M.J. , Wu, M.T. , Taub, D. , Peterson, E.R. , Ikeler, T.J. , ten Broeke, J. , Payne, L.G. , Ondeyka, D.L. , Thorsett, E.D. , Greenlee, W.J. , Lohr, N.S. , Hoffsommer, R.D. , Joshua, H. , Ruyle, W.V. , Rothrock, J.W. , Aster, S.D. , Maycock, A.L. , Robinson, F.M. , Hirschmann, R. , Sweet, C.S. , Ulm, E.H. , Gross, D.M. , Vassil, T.C. , Stone, C.A. (1980) A new class of angiotensin‐converting enzyme inhibitors. Nature 288: 280–283. [DOI] [PubMed] [Google Scholar]
  • [94]. Teetz, V. , Geiger, R. , Henning, R. , Urbach, H. (1984) Synthesis of a highly active angiotensin converting enzyme inhibitor: 2‐[N‐[(S)‐1‐ethoxycarbonyl‐3‐phenylpropyl]‐L‐alanyl]‐(1S,3S,5S)‐2‐ azabicyclo[3.3.0]octane‐3‐carboxylic acid (Hoe 498). Arzneimittelforschung 34: 1399–1401. [PubMed] [Google Scholar]
  • [95]. Klutchko, S. , Blankley, C.J. , Fleming, R.W. , Hinkley, J.M. , Werner, A.E. , Nordin, I. , Holmes, A. , Hoefle, M.L. , Cohen, D.M. , Essenburg, A.D. , et al. (1986) Synthesis of novel angiotensin converting enzyme inhibitor quinapril and related compounds. A divergence of structure‐activity relationships for non‐sulfhydryl and sulfhydryl types. J. Med. Chem. 29: 1953–1961. [DOI] [PubMed] [Google Scholar]
  • [96]. Brunner, D.B. , Desponds, G. , Biollaz, J. , Keller, I. , Ferber, F. , Gavras, H. , Brunner, H.R. , Schelling, J.L. (1981) Effect of a new angiotensin converting enzyme inhibitor MK 421 and its lysine analogue on the components of the renin system in healthy subjects. Br. J. Clin. Pharmacol. 11: 461–467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [97]. Fortin, J.P. , Gobeil, F. Jr. , Adam, A. , Regoli, D. , Marceau, F. (2003) Do angiotensin‐converting enzyme inhibitors directly stimulate the kinin B1 receptor? Am. J. Physiol. Heart Circ. Physiol. 285: H277–282. [DOI] [PubMed] [Google Scholar]
  • [98]. Gobeil, F. Jr. , Halle, S. , Blais, P.A. , Regoli, D. (2002) Studies on the angiotensin‐converting enzyme and the kinin B2 receptor in the rabbit jugular vein: modulation of contractile response to bradykinin. Can. J. Physiol. Pharmacol. 80: 153–163. [DOI] [PubMed] [Google Scholar]
  • [99]. Ongali, B. , Buck Hde, S. , Cloutier, F. , Legault, F. , Regoli, D. , Lambert, C. , Thibault, G. , Couture, R. (2003) Chronic effects of angiotensin‐converting enzyme inhibition on kinin receptor binding sites in the rat spinal cord. Am. J. Physiol. Heart Circ. Physiol. 284: H1949–1958. [DOI] [PubMed] [Google Scholar]
  • [100]. Koehne, P. , Schaper, C. , Graf, K. , Kunkel, G. (1998) Neutral endopeptidase 24.11: its physiologic and possibly pathophysiologic role in inflammation with special effect on respiratory inflammation. Allergy 53: 1023–1042. [DOI] [PubMed] [Google Scholar]
  • [101]. Skidgel, R.A. , Erdös, E.G. (2004) Angiotensin converting enzyme (ACE) and neprilysin hydrolyze neuropeptides: a brief history, the beginning and follow‐ups to early studies. Peptides 25: 521–525. [DOI] [PubMed] [Google Scholar]
  • [102]. Molina, H.M. , Carmona, A.K. , Kouyoumdjian, M. , Borges, D.R. , Juliano, L. (1996) Liver bradykinin‐inactivating‐endopeptidase is similar to the metalloendopeptidase (EC 3.4.24.15). Immunopharmacology 32: 176–179. [DOI] [PubMed] [Google Scholar]
  • [103]. Ryan, J.W. , Papapetropoulos, A. , Ju, H. , Denslow, N.D. , Antonov, A. , Virmani, R. , Kolodgie, F.D. , Gerrity, R.G. , Catravas, J.D. (1996) Aminopeptidase P is disposed on human endothelial cells. Immunopharmacology 32: 149–152. [DOI] [PubMed] [Google Scholar]
  • [104]. Papapetropoulos, A. , Ryan, J.W. , Antonov, A. , Virmani, R. , Kolodgie, F.D. , Gerrity, R.G. , Catravas, J.D. (1996) Human aortic endothelial cell aminopeptidase N. Immunopharmacology 32: 153–156. [DOI] [PubMed] [Google Scholar]
  • [105]. Skidgel, R.A. , McGwire, G.B. , Li, X.Y. (1996) Membrane anchoring and release of carboxypeptidase M: implications for extracellular hydrolysis of peptide hormones. Immunopharmacology 32: 48–52. [DOI] [PubMed] [Google Scholar]
  • [106]. Simmons, W.H. , Orawski, A.T. , Maggiora, L.L. (2000) Inhibitors of the bradykinin‐degrading enzyme, aminopeptidase P. In Peptides for the New Millenium, Proceedings of the 16th American Peptide Symposium. Eds. Fields, G.B., Tam, J.P., Barany, G., Kluwer Academic Publishers, Dordrecht (Neth), pp. 429–430.
  • [107]. Maggiora, L.L. , Orawski, A.T. , Simmons, W.H. (1999) Apstatin analogue inhibitors of aminopeptidase P, a bradykinin‐degrading enzyme. J. Med. Chem. 42: 2394–2402. [DOI] [PubMed] [Google Scholar]
  • [108]. Blaukat, A. , AbdAlla, S. , Lohse, M.J. , Müller‐Esterl, W. (1996) Ligand‐induced phosphorylation/ dephosphorylation of the endogenous bradykinin B2 receptor from human fibroblasts. J. Biol. Chem. 271: 32366–32374. [DOI] [PubMed] [Google Scholar]
  • [109]. Pizard, A. , Blaukat, A. , Müller‐Esterl., W. , Alhenc‐Gelas, F. , Rajerison, R.M. (1999) Bradykinin‐induced internalization of the human B2 receptor requires phosphorylation of three serine and two threonine residues at its carboxyl tail. J. Biol. Chem. 274: 12738–12747. [DOI] [PubMed] [Google Scholar]
  • [110]. Kalatskaya, I. , Schüssler, S. , Blaukat, A. , Müller‐Esterl, W. , Jochum, M. , Proud, D. , Faussner, A. , (2004) Mutation of tyrosine in the conserved NPXXY sequence leads to constitutive phosphorylation and internalization, but not signalling, of the human B2 bradykinin receptor. J. Biol. Chem. 279: 31268–31276. [DOI] [PubMed] [Google Scholar]
  • [111]. Duchene, J. , Schanstra, J.P. , Pecher, C. , Pizard, A. , Susini, C. , Esteve, J.P. , Bascands, J.L. , Girolami, J.P. (2002) A novel protein‐protein interaction between a G protein‐coupled receptor and the phosphatase SHP‐2 is involved in bradykinin‐induced inhibition of cell proliferation. J. Biol. Chem. 277: 40375–40383. [DOI] [PubMed] [Google Scholar]
  • [112]. Kang, D.S. , Ryberg, K. , Morgelin, M. , Leeb‐Lundberg, L.M. (2004) Spontaneous formation of a proteolytic B1 and B2 bradykinin receptor complex with enhanced signaling capacity. J. Biol. Chem. 279: 22102–22107. [DOI] [PubMed] [Google Scholar]
  • [113]. Klinker, J.F. , Seifert, R. (1995) Receptor independent activation of G proteins. Pharm. Unserer Zeit 24: 250–263. (German) [DOI] [PubMed] [Google Scholar]
  • [114]. AbdAlla, S. , Zaki, E. , Lother, H. , Quitterer, U. (1999) Involvement of the amino terminus of the B2 receptor in agonist‐induced receptor dimerization. J. Biol. Chem. 274: 26079–26084. [DOI] [PubMed] [Google Scholar]
  • [115]. Marcic, B.M. , Erdös, E.G. (2000) Protein kinase C and phosphatase inhibitors block the ability of angiotensin I‐converting enzyme inhibitors to resensitize the receptor to bradykinin without altering the primary effects of bradykinin. J. Pharmacol. Exp. Ther. 294: 605–612. [PubMed] [Google Scholar]
  • [116]. Higashida, H. , Taketo, M. , Takahashi, H. , Yokoyama, S. , Hashii, M. (1999) Potential mechanism for bradykinin‐activated and inositol tetrakisphosphate‐dependent Ca2+ influx by Ras and GAP1 in fibroblast cells. Immunopharmacology 45: 7–11. [DOI] [PubMed] [Google Scholar]
  • [117]. Paegelow, I. , Trzeczak, S. , Bockmann, S. , Vietinghoff, G. (2002) Migratory responses of polymorphonuclear leukocytes to kinin peptides. Pharmacology 66: 153–161. [DOI] [PubMed] [Google Scholar]
  • [118]. Dendorfer, A. , Wagemann, M. , Reissmann, S. , Dominiak, P. (1999) Structural requirements for B2‐agonists with improved degradation stability. Immunopharmacology 45: 199–205. [DOI] [PubMed] [Google Scholar]
  • [119]. Asano, M. , Hatori, C. , Sawai, H. , Johki, S. , Inamura, N. , Kayakiri, H. , Satoh, S. , Abe, Y. , Inoue, T. , Sawada, Y. , Mizutani, T. , Oku, T. , Nakahara, K. (1998) Pharmacological characterization of a nonpeptide bradykinin B2 receptor antagonist, FR165649, and agonist, FR190997. Br. J. Pharmacol. 124: 441–446. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Signal Transduction are provided here courtesy of Wiley

RESOURCES