Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 12;11(1):59–72. doi: 10.1016/0168-1702(88)90067-6

Further characterization of the virus-specific RNAs in feline calicivirus infected cells

John D Neill 1,, William L Mengeling 1
PMCID: PMC7172345  PMID: 3176687

Abstract

The virus-specific RNAs in feline calicivirus (FCV) infected cells were examined to determine the number and forms of RNAs that are synthesized during the infection process. Northern blots of poly(A)+ RNA from 5-h infected cells probed with a cDNA clone derived from the 3' end of the FCV genome (pCV3) revealed four FCV-specific RNAs that were approximately 8.2 (genomic RNA), 4.8, 4.2 and 2.4 kb in length. Northern blots of poly(A)+ RNA purified from infected cells hourly after infection and probed with pCV3 demonstrated that transcription of all FCV-specific RNAs are detectable at 2 to 3 h post-infection (PI) and that these RNAs reached steady state levels at approximately 4 h PI. The levels of the FCV RNAs then remained relatively constant through 7 h PI, the last time tested, with the exception of the 4.8 and 4.2 kb transcripts which showed a marked increase between 6 and 7 hours PI. Northern blots of dsRNA which had been LiCl-fractionated from pooled total cellular RNA isolated from 5-h and 7-h FCV infected cells, showed two double-stranded RNAs corresponding to the 8.2 kb genomic RNA and the 2.4 kb subgenomic RNA. Preliminary mapping by Northern blotting using cDNA probes derived from varying locations within the FCV genome was done to determine the approximate regions from which the subgenomic RNAs are derived. This analysis indicates that the viral RNAs are nested, co-terminal transcripts with common 3' ends.

Keywords: Feline calicivirus, Northern blot, Subgenomic RNA, Double-stranded RNA

References

  1. Appleyard R.K. Segregation of new lysogenic types during growth of a doubly lysogenic strain derived from Escherichia coli K12. Genetics. 1954;39:440–452. doi: 10.1093/genetics/39.4.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baric R.S., Shieh C.K., Stohlman S.A., Lai M.M.C. Analysis of intracellular small RNAs of mouse hepatitis virus: evidence for discontinuous transcription. Virology. 1987;156:342–354. doi: 10.1016/0042-6822(87)90414-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barlough J.E., Berry E.S., Skilling D.E., Smith A.W., Fay F.H. Antibodies to marine caliciviruses in the pacific walrus (Odobenus rosmarus divergens Illiger) J. Wildlife Dis. 1986;22:165–168. doi: 10.7589/0090-3558-22.2.165. [DOI] [PubMed] [Google Scholar]
  4. Black D.N., Brown F. Proteins induced by infection with caliciviruses. J. Gen. Virol. 1977;38:75–82. doi: 10.1099/0022-1317-38-1-75. [DOI] [PubMed] [Google Scholar]
  5. Black D.N., Burroughs J.N., Harris T.J.R., Brown F. The structure and replication of calicivirus RNA. Nature. 1978;274:614–615. doi: 10.1038/274614a0. [DOI] [PubMed] [Google Scholar]
  6. Brayton P.R., Stohlman S.A., Lai M.M.C. Further characterization of mouse hepatitis virus RNA-dependent RNA polymerases. Virology. 1984;133:197–201. doi: 10.1016/0042-6822(84)90439-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bruton C.J., Kennedy S.I.T. Semliki Forest virus intracellular RNA: properties of the multi-stranded RNA species and kinetics of positive and negative strand synthesis. J. Gen. Virol. 1975;28:111–127. doi: 10.1099/0022-1317-28-1-111. [DOI] [PubMed] [Google Scholar]
  8. Burroughs J.N., Brown F. Physico-chemical evidence for re-classification of the caliciviruses. J. Gen. Virol. 1974;22:281–285. doi: 10.1099/0022-1317-22-2-281. [DOI] [PubMed] [Google Scholar]
  9. Cubbitt W.D., McSwiggan D.A., Moore W. Winter vomiting disease caused by calicivirus. J. Clin. Path. 1979;32:786–793. doi: 10.1136/jcp.32.8.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ehresmann D.W., Schaffer F.L. RNA synthesized in calicivirus-infected cells is atypical of picornaviruses. J. Virol. 1977;22:572–576. doi: 10.1128/jvi.22.2.572-576.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ehresmann D.W., Schaffer F.L. Calicivirus intracellular RNA: fractionation of 18–22 S RNA and lack of typical 5'-methylated cap on 36 S and 22 S San Miguel Sea Lion Virus RNAs. Virology. 1979;95:251–255. doi: 10.1016/0042-6822(79)90426-4. [DOI] [PubMed] [Google Scholar]
  12. Fretz M., Schaffer F.L. Calicivirus proteins in infected cells: evidence for a capsid polypeptide precursor. Virology. 1978;89:318–321. doi: 10.1016/0042-6822(78)90065-x. [DOI] [PubMed] [Google Scholar]
  13. Garger S.J., Turpen T.H. Use of RNA probes to detect plant RNA viruses. Methods Enzymol. 1986;118:717–722. [Google Scholar]
  14. Gillespie J.H., Scott F.W. Feline viral infections. Adv. Vet. Sci. Comp. Med. 1973;17:163–200. [PubMed] [Google Scholar]
  15. Gubler U., Hoffman B.J. A simple and very efficient method for generating cDNA libraries. Gene. 1983;25:263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  16. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 1983;166:557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  17. Krawetz S.A., Anwar R.A. Optimization of the isolation of biologically active mRNA from chick embryo aorta. Biotechniques. 1984;2:342–347. [Google Scholar]
  18. Lehrach H., Diamond D., Wozney J.M., Boedtker H. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry. 1977;16:4743–4751. doi: 10.1021/bi00640a033. [DOI] [PubMed] [Google Scholar]
  19. Love D.N. Feline calicivirus: purification of virus and extraction and characterization of its ribonucleic acid. Cornell Vet. 1976;66:498–512. [PubMed] [Google Scholar]
  20. Maniatis T., Fritsch E.F., Sambrook J. 1st Edn. Cold Spring Harbor Laboratory; New York: 1982. Molecular cloning. (A laboratory handbook). [Google Scholar]
  21. Oglesby A.S., Schaffer F.L., Madin S.H. Biochemical and biophysical properties of vesicular exanthema of swine virus. Virology. 1971;44:329–341. doi: 10.1016/0042-6822(71)90264-9. [DOI] [PubMed] [Google Scholar]
  22. Ou J.H., Strauss E.G., Strauss J.H. The 5' terminal sequences of the genomic RNAs of several alphaviruses. J. Mol. Biol. 1983;168:1–15. doi: 10.1016/s0022-2836(83)80319-2. [DOI] [PubMed] [Google Scholar]
  23. Schaffer F.L. Caliciviruses. In: Fraenkel-Conrat H., Wagner R., editors. Vol. 14. Plenum Press; New York, London: 1979. pp. 249–284. (Comparative Virology). [Google Scholar]
  24. Schaffer F.L., Soergel M.E., Black J.W., Skilling D.E., Smith A.W., Cubbitt W.D. Characterization of a new calicivirus isolated from feces of a dog. Arch. Virol. 1985;84:181–195. doi: 10.1007/BF01378971. [DOI] [PubMed] [Google Scholar]
  25. Smith A.W. Marine reservoirs for caliciviruses. In: Steele J.H., Beran G.W., editors. Vol. II. CRC Press, Inc; Boca Raton, Florida: 1981. pp. 182–190. (CRC Handbook Series in Zoonoses, Sect. B). [Google Scholar]
  26. Soergel M.E., Smith A.W., Schaffer F.L. Biophysical comparisons of calicivirus serotypes isolated from pinnipeds. Intervirology. 1975;5:239–244. doi: 10.1159/000149920. [DOI] [PubMed] [Google Scholar]
  27. Strauss E.G., Strauss J.H. Replication strategies of the single stranded RNA viruses of eukaryotes. In: Cooper M., editor. Current Topics in Microbiology and Immunology. Springer-Verlag; Berlin: 1982. pp. 1–98. [DOI] [PubMed] [Google Scholar]
  28. Studdert M.J., Martin M.C., Peterson J.E. Viral diseases of the respiratory tract of cats: Isolation and properties of viruses tentatively classified as picornaviruses. Am. J. Vet. Res. 1970;31:1723–1732. [PubMed] [Google Scholar]
  29. Sturman L.S., Holmes K.V. The molecular biology of coronaviruses. Adv. Virus Res. 1983;28:35–112. doi: 10.1016/S0065-3527(08)60721-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thomas P.S. Vol. 77. 1980. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose; pp. 5201–5205. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Williams S.A., Slatko B.E., Moran L.S., DeSimone S.M. Sequencing in the fast lane: A rapid protocol for [α-35S]dATP dideoxy DNA sequencing. Biotechniques. 1986;4:138–147. [Google Scholar]
  32. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains; nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33:103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Virus Research are provided here courtesy of Elsevier

RESOURCES