Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2017 Jun 21;74:S2–S9. doi: 10.1016/S0163-4453(17)30184-6

Whither vaccines?

Charlene MC Rodrigues a,*, Marta V Pinto b, Manish Sadarangani b,c, Stanley A Plotkin d
PMCID: PMC7172359  PMID: 28646957

Abstract

Currently used vaccines have had major effects on eliminating common infections, largely by duplicating the immune responses induced by natural infections. Now vaccinology faces more complex problems, such as waning antibody, immunosenescence, evasion of immunity by the pathogen, deviation of immunity by the microbiome, induction of inhibitory responses, and complexity of the antigens required for protection. Fortunately, vaccine development is now incorporating knowledge from immunology, structural biology, systems biology and synthetic chemistry to meet these challenges. In addition, international organisations are developing new funding and licensing pathways for vaccines aimed at pathogens with epidemic potential that emerge from tropical areas.

Keywords: Vaccinology, Influenza, Pertussis, HIV, Rotavirus, Dengue, CMV, RSV, Structural biology, Host immunity

Available online 23 June 2017

References

  • 1.Baxby D. Edward Jenner’s inquiry after 200 years. BMJ. 1999;318(7180):390. doi: 10.1136/bmj.318.7180.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Giuliani M.M., Adu-Bobie J., Comanducci M., Arico B., Savino S., Santini L. A universal vaccine for serogroup B meningococcus. Proc Natl Acad Sci USA. 2006;103(29):10834–10839. doi: 10.1073/pnas.0603940103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Pica N., Palese P. Toward a Universal Influenza Virus Vaccine: Prospects and Challenges. Annu Rev Med. 2013;64(1):189–202. doi: 10.1146/annurev-med-120611-145115. [DOI] [PubMed] [Google Scholar]
  • 4.Manzoli L., loannidis J.P.A., Flacco M.E., De Vito C., Villari P. Effectiveness and harms of seasonal and pandemic influenza vaccines in children, adults and elderly. Hum Vaccin Immunother. 2012;8(7):851–862. doi: 10.4161/hv.19917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.DiazGranados C.A., Denis M., Plotkin S. Seasonal influenza vaccine efficacy and its determinants in children and nonelderly adults: A systematic review with meta-analyses of controlled trials. Vaccine. 2012;31(1):49–57. doi: 10.1016/j.vaccine.2012.10.084. [DOI] [PubMed] [Google Scholar]
  • 6.Schotsaert M., García-Sastre A. Influenza Vaccines: A Moving Interdisciplinary Field. Viruses. 2014;6(10):3809–3826. doi: 10.3390/v6103809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Hensley S.E., Das S.R., Bailey A.L., Schmidt L.M., Hickman H.D., Jayaraman A. Hemagglutinin Receptor Binding Avidity Drives Influenza A Virus Antigenic Drift. Science. 2009;326(5953):734–736. doi: 10.1126/science.1178258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.McElhaney J.E., Coler R.N., Baldwin S.L. Immunologic correlates of protection and potential role for adjuvants to improve influenza vaccines in older adults. Expert Rev Vaccines. 2013;12(7):759–766. doi: 10.1586/14760584.2013.811193. [DOI] [PubMed] [Google Scholar]
  • 9.Ambrose C.S., Levin M.J., Belshe R.B. The relative efficacy of trivalent live attenuated and inactivated influenza vaccines in children and adults. Influenza Other Respir Viruses. 2010;5(2):67–75. doi: 10.1111/j.1750-2659.2010.00183.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Novartis Vaccines and Diagnostics Inc. FLUAD® (Influenza Vaccine, Surface Antigen, Inactivated, Adjuvanted with MF59C.1), Product Monograph. 2014.
  • 11.National Advisory Committee on Immunization . Public Health Agency of Canada; Canada: 2015. Canadian Immunization Guide Chapter on Influenza and Statement on Seasonal Influenza Vaccine for 2015–2016. [Google Scholar]
  • 12.Zedda L., Forleo-Neto E., Vertruyen A., Raes M., Marchant A., Jansen W. Dissecting the Immune Response to MF59-adjuvanted and Non-adjuvanted Seasonal Influenza Vaccines in Children Less Than Three Years of Age. Pediatr Infect Dis J. 2015;34(1):73–78. doi: 10.1097/INF.0000000000000465. [DOI] [PubMed] [Google Scholar]
  • 13.Frey S.E., Reyes M.R.A., Reynales H., Bermal N.N., Nicolay U., Narasimhan V. Comparison of the safety and immunogenicity of an MF59®-adjuvanted with a non-adjuvanted seasonal influenza vaccine in elderly subjects. Vaccine. 2014;32(39):5027–5034. doi: 10.1016/j.vaccine.2014.07.013. [DOI] [PubMed] [Google Scholar]
  • 14.Plotkin S.A. Increasing Complexity of Vaccine Development. J Infect Dis. 2015;212(suppl 1):S12–S16. doi: 10.1093/infdis/jiu568. [DOI] [PubMed] [Google Scholar]
  • 15.World Health Organisation. Pertussis vaccines: WHO position paper. Wkly Epidemiol Rec. 2010;40(85):385–400. [PubMed] [Google Scholar]
  • 16.Kmietowicz Z. Pertussis cases rise 10-fold among older children and adults in England and Wales. BMJ. 2012;345(jul23 1):e5008–e. doi: 10.1136/bmj.e5008. [DOI] [PubMed] [Google Scholar]
  • 17.de Greeff S.C., de Melker H.E., vanGageldonk P.G.M., Schellekens J.F.P., van derKlis F.R.M., Mollema L. Seroprevalence of Pertussis in the Netherlands: Evidence for Increased Circulation of Bordetella pertussis. PLoS One. 2010;5(12) doi: 10.1371/journal.pone.0014183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Lee Grace M., Lett S., Schauer S., LeBaron C., Murphy Trudy V., Rusinak D. Societal Costs and Morbidity of Pertussis in Adolescents and Adults. Clin Infect Dis. 2004;39(11):1572–1580. doi: 10.1086/425006. [DOI] [PubMed] [Google Scholar]
  • 19.Koepke R., Eickhoff J.C., Ayele R.A., Petit A.B., Schauer S.L., Hopfensperger D.J. Estimating the Effectiveness of Tetanus-Diphtheria-Acellular Pertussis Vaccine (Tdap) for Preventing Pertussis: Evidence of Rapidly Waning Immunity and Difference in Effectiveness by Tdap Brand. J Infect Dis. 2014;210(6):942–953. doi: 10.1093/infdis/jiu322. [DOI] [PubMed] [Google Scholar]
  • 20.Allen A.C., Mills K.H.G. Improved pertussis vaccines based on adjuvants that induce cell-mediated immunity. Expert Rev Vaccines. 2014;13(10):1253–1264. doi: 10.1586/14760584.2014.936391. [DOI] [PubMed] [Google Scholar]
  • 21.Warfel J.M., Merkel T.J. The baboon model of pertussis: effective use and lessons for pertussis vaccines. Expert Rev Vaccines. 2014;13(10):1241–1252. doi: 10.1586/14760584.2014.946016. [DOI] [PubMed] [Google Scholar]
  • 22.Warfel J.M., Zimmerman L.I., Merkel T.J. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proc Natl Acad Sci U S A. 2014;111(2):787–792. doi: 10.1073/pnas.1314688110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Rathore J.S., Wang Y. Protective role of Th17 cells in pulmonary infection. Vaccine. 2016;34(13):1504–1514. doi: 10.1016/j.vaccine.2016.02.021. [DOI] [PubMed] [Google Scholar]
  • 24.Lam C., Octavia S., Bahrame Z., Sintchenko V., Gilbert G.L., Lan R. Selection and emergence of pertussis toxin promoter ptxP3 allele in the evolution of Bordetella pertussis. Infect Genet Evol. 2012;12(2):492–495. doi: 10.1016/j.meegid.2012.01.001. [DOI] [PubMed] [Google Scholar]
  • 25.Sealey K.L., Harris S.R., Fry N.K., Hurst L.D., Gorringe A.R., Parkhill J. Genomic Analysis of Isolates From the United Kingdom 2012 Pertussis Outbreak Reveals That Vaccine Antigen Genes Are Unusually Fast Evolving. J Infect Dis. 2014;212(2):294–301. doi: 10.1093/infdis/jiu665. [DOI] [PubMed] [Google Scholar]
  • 26.Sebo P., Osicka R., Masin J. Adenylate cyclase toxin-hemolysin relevance for pertussis vaccines. Expert Rev Vaccines. 2014;13(10):1215–1227. doi: 10.1586/14760584.2014.944900. [DOI] [PubMed] [Google Scholar]
  • 27.Fedele G., Bianco M., Ausiello C.M. The Virulence Factors of Bordetella pertussis: Talented Modulators of Host Immune Response. Arch Immunol Ther Exp. 2013;61(6):445–457. doi: 10.1007/s00005-013-0242-1. [DOI] [PubMed] [Google Scholar]
  • 28.Thorstensson R., Trollfors B., Al-Tawil N., Jahnmatz M., Bergström J., Ljungman M. A Phase I Clinical Study of a Live Attenuated Bordetella pertussis Vaccine – BPZE1; A Single Centre, Double-Blind, Placebo-Controlled, Dose-Escalating Study of BPZE1 Given Intranasally to Healthy Adult Male Volunteers. PLoS One. 2014;9(1) doi: 10.1371/journal.pone.0083449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Li Q.T., Zhu Y.Z., Chu J.Y., Dong K., He P., Feng C.Y. Granulocyte-macrophage colony-stimulating factor DNA prime-protein boost strategy to enhance efficacy of a recombinant pertussis DNA vaccine. Acta Pharmacol Sin. 2006;27(11):1487–1494. doi: 10.1111/j.1745-7254.2006.00456.x. [DOI] [PubMed] [Google Scholar]
  • 30.Maartens G., Celum C., Lewin S.R. HIV infection: epidemiology, pathogenesis, treatment, and prevention. Lancet. 2014;384(9939):258–271. doi: 10.1016/S0140-6736(14)60164-1. [DOI] [PubMed] [Google Scholar]
  • 31.Lihana R.W., Ssemwanga D., Abimiku A., Ndembi N. Update on HIV-1 diversity in Africa: a decade in review. AIDS Rev. 2012;14(2):83–100. [PubMed] [Google Scholar]
  • 32.Kim J.H., Excler J.L., Michael N.L. Lessons from the RV144 Thai phase III HIV-1 vaccine trial and the search for correlates of protection. Annu Rev Med. 2015;66:423–437. doi: 10.1146/annurev-med-052912-123749. [DOI] [PubMed] [Google Scholar]
  • 33.Rerks-Ngarm S., Pitisuttithum P., Nitayaphan S., Kaewkungwal J., Chiu J., Paris R. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med. 2009;361(23):2209–2220. doi: 10.1056/NEJMoa0908492. [DOI] [PubMed] [Google Scholar]
  • 34.Yates N.L., Liao H.X., Fong Y., deCamp A., Vandergrift N.A., Williams W.T. Vaccine-induced Env V1-V2 IgG3 correlates with lower HIV-1 infection risk and declines soon after vaccination. Sci Transl Med. 2014;6(228):228ra39. doi: 10.1126/scitranslmed.3007730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Excler J.L., Ake J., Robb M.L., Kim J.H., Plotkin S.A. Nonneutralizing functional antibodies: a new “old” paradigm for HIV vaccines. Clin Vaccine Immunol. 2014;21(8):1023–1036. doi: 10.1128/CVI.00230-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Jegaskanda S., Weinfurter J.T., Friedrich T.C., Kent S.J. Antibody-Dependent Cellular Cytotoxicity Is Associated with Control of Pandemic H1N1 Influenza Virus Infection of Macaques. J Virol. 2013;87(10):5512–5522. doi: 10.1128/JVI.03030-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Jegaskanda S., Luke C., Hickman H.D., Sangster M.Y., Wieland-Alter W.F., McBride J.M. Generation and Protective Ability of Influenza Virus-Specific Antibody-Dependent Cellular Cytotoxicity in Humans Elicited by Vaccination, Natural Infection, and Experimental Challenge. J Infect Dis. 2016;214(6):945–952. doi: 10.1093/infdis/jiw262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Hansen S.G., Piatak M., Jr., Ventura A.B., Hughes C.M., Gilbride R.M., Ford J.C. Immune clearance of highly pathogenic SIV infection. Nature. 2013;502(7469):100–104. doi: 10.1038/nature12519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Dennehy P.H. Rotavirus vaccines: an overview. Clin Microbiol Rev. 2008;21(1):198–208. doi: 10.1128/CMR.00029-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Bishop R.F., Barnes G.L., Cipriani E., Lund J.S. Clinical immunity after neonatal rotavirus infection. A prospective longitudinal study in young children. N Engl J Med. 1983;309(2):72–76. doi: 10.1056/NEJM198307143090203. [DOI] [PubMed] [Google Scholar]
  • 41.Fischer T.K., Valentiner-Branth P., Steinsland H., Perch M., Santos G., Aaby P. Protective immunity after natural rotavirus infection: a community cohort study of newborn children in Guinea-Bissau, west Africa. J Infect Dis. 2002;186(5):593–597. doi: 10.1086/342294. [DOI] [PubMed] [Google Scholar]
  • 42.Velazquez F.R., Matson D.O., Calva J.J., Guerrero L., Morrow A.L., Carter-Campbell S. Rotavirus infections in infants as protection against subsequent infections. N Engl J Med. 1996;335(14):1022–1028. doi: 10.1056/NEJM199610033351404. [DOI] [PubMed] [Google Scholar]
  • 43.Rha B., Tate J.E., Payne D.C., Cortese M.M., Lopman B.A., Curns A.T. Effectiveness and impact of rotavirus vaccines in the United States – 2006-2012. Expert Rev Vaccines. 2014;13(3):365–376. doi: 10.1586/14760584.2014.877846. [DOI] [PubMed] [Google Scholar]
  • 44.Cortes J.E., Curns A.T., Tate J.E., Cortese M.M., Patel M.M., Zhou F. Rotavirus vaccine and health care utilization for diarrhea in U.S. children. N Engl J Med. 2011;365(12):1108–1117. doi: 10.1056/NEJMoa1000446. [DOI] [PubMed] [Google Scholar]
  • 45.Giaquinto C., Dominiak-Felden G., Van Damme P., Myint T.T., Maldonado Y.A., Spoulou V. Summary of effectiveness and impact of rotavirus vaccination with the oral pentavalent rotavirus vaccine: a systematic review of the experience in industrialized countries. Hum Vaccin. 2011;7(7):734–748. doi: 10.4161/hv.7.7.15511. [DOI] [PubMed] [Google Scholar]
  • 46.World Health Organisation. Rotavirus vaccines: an update. Weekly Epidemiological Record. 2009;84:553–40. [Google Scholar]
  • 47.Babji S., Kang G. Rotavirus vaccination in developing countries. Curr Opin Virol. 2012;2(4):443–448. doi: 10.1016/j.coviro.2012.05.005. [DOI] [PubMed] [Google Scholar]
  • 48.Cooper P.J., Chico M.E., Losonsky G., Sandoval C., Espinel I., Sridhara R. Albendazole treatment of children with ascariasis enhances the vibriocidal antibody response to the live attenuated oral cholera vaccine CVD 103-HgR. J Infect Dis. 2000;182(4):1199–1206. doi: 10.1086/315837. [DOI] [PubMed] [Google Scholar]
  • 49.Uchlyama R., Chassaing B., Zhang B., Gewirtz A.T. Antibiotic treatment suppresses rotavirus infection and enhances specific humoral immunity. J Infect Dis. 2014;210(2):171–182. doi: 10.1093/infdis/jiu037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Kuss S.K., Best G.T., Etheredge C.A., Pruijssers A.J., Frierson J.M., Hooper L.V. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science. 2011;334(6053):249–252. doi: 10.1126/science.1211057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Rod rigo W.W., Block O.K., Lane C., Sukupolvi-Petty S., Goncalvez A.P., Johnson S. Dengue virus neutralization is modulated by IgG antibody subclass and Fcgamma receptor subtype. Virology. 2009;394(2):175–182. doi: 10.1016/j.virol.2009.09.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Wu R.S., Chan K.R., Tan H.C., Chow A., Allen J.C., Jr., Ooi E.E. Neutralization of dengue virus in the presence of Fc receptor-mediated phagocytosis distinguishes serotype-specific from cross-neutralizing antibodies. Antiviral Res. 2012;96(3):340–343. doi: 10.1016/j.antiviral.2012.09.018. [DOI] [PubMed] [Google Scholar]
  • 53.Montoya M., Gresh L., Mercado J.C., Williams K.L., Vargas M.J., Gutierrez G. Symptomatic versus inapparent outcome in repeat dengue virus infections is influenced by the time interval between infections and study year. PLoS Negl Trop Dis. 2013;7(8) doi: 10.1371/journal.pntd.0002357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Reich N.G., Shrestha S., King A.A., Rohani P., Lessler J., Kalayanarooj S. Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity. J R Soc Interface. 2013;10(86):20130414. doi: 10.1098/rsif.2013.0414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Endy T.P., Yoon I.K., Mammen M.P. Prospective cohort studies of dengue viral transmission and severity of disease. Curr Top Microbiol Immunol. 2010;338:1–13. doi: 10.1007/978-3-642-02215-9_1. [DOI] [PubMed] [Google Scholar]
  • 56.Graham R.R., Juffrie M., Tan R., Hayes C.G., Laksono I., Ma’roef C. A prospective seroepidemiologic study on dengue in children four to nine years of age in Yogyakarta, Indonesia I. studies in 1995–1996. Am J Trop Med Hyg. 1999;61(3):412–419. doi: 10.4269/ajtmh.1999.61.412. [DOI] [PubMed] [Google Scholar]
  • 57.Thein S., Aung M.M., Shwe T.N., Aye M., Zaw A., Aye K. Risk factors in dengue shock syndrome. Am J Trop Med Hyg. 1997;56(5):566–572. doi: 10.4269/ajtmh.1997.56.566. [DOI] [PubMed] [Google Scholar]
  • 58.Capeding M.R., Tran N.H., Hadinegoro S.R., Ismail H.I., Chotpitayasunondh T., Chua M.N. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet. 2014;384(9951):1358–1365. doi: 10.1016/S0140-6736(14)61060-6. [DOI] [PubMed] [Google Scholar]
  • 59.Villar L., Dayan G.H., Arredondo-Garcia J.L., Rivera D.M., Cunha R., Deseda C. Efficacy of a tetravalent dengue vaccine in children in Latin America. N Engl J Med. 2015;372(2):113–123. doi: 10.1056/NEJMoa1411037. [DOI] [PubMed] [Google Scholar]
  • 60.de Alwis R., Bangs D.J., Angelo M.A., Cerpas C., Fernando A., Sidney J. Immunodominant Dengue Virus-Specific CD8+ T Cell Responses Are Associated with a Memory PD-1+ Phenotype. J Virol. 2016;90(9):4771–4779. doi: 10.1128/JVI.02892-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Navarro D. Expanding role of cytomegalovirus as a human pathogen. J Med Virol. 2016;88(7):1103–1112. doi: 10.1002/jmv.24450. [DOI] [PubMed] [Google Scholar]
  • 62.Baron C., Forconi C., Lebranchu Y. Revisiting the effects of CMV on long-term transplant outcome. Curr Opin Organ Transplant. 2010;15(4):492–498. doi: 10.1097/MOT.0b013e32833bd3b5. [DOI] [PubMed] [Google Scholar]
  • 63.Modlin J.F., Arvin A.M., Fast P., Myers M., Plotkin S., Rabinovich R. Vaccine Development to Prevent Cytomegalovirus Disease: Report from the National Vaccine Advisory Committee. Clin Infect Dis. 2004;39(2):233–239. doi: 10.1086/421999. [DOI] [PubMed] [Google Scholar]
  • 64.Plorkin S., Friedman H., Fleisher G., Dafoe D., Grossman R., Lynn Smiley M. Towne-vaccine-induced prevention of cytomegalovirus disease after renal transplants. Lancet. 1984;323(8376):528–530. doi: 10.1016/s0140-6736(84)90930-9. [DOI] [PubMed] [Google Scholar]
  • 65.Plotkin S.A., Higgins R., Kurtz J.B., Morris P.J., Campbell D.A., Shope T.C. Multicenter trial of towne strain attenuated virus vaccine in seronegative renal transplant recipients. Transplantation. 1994;58(11):1176–1178. [PubMed] [Google Scholar]
  • 66.Adler S.P., Starr S.E., Plotkin S.A., Hempfling S.H., Buis J., Manning M.L. Immunity Induced By Primary Human Cytomegalovirus Infection Protects Against Secondary Infection Among Women Of Childbearing Age. J Infect Dis. 1995;171(1):26–32. doi: 10.1093/infdis/171.1.26. [DOI] [PubMed] [Google Scholar]
  • 67.Kirchmeier M., Fluckiger A.C., Soare C., Bozic J., Ontsouka B., Ahmed T. Enveloped Virus-Like Particle Expression of Human Cytomegalovirus Glycoprotein B Antigen Induces Antibodies with Potent and Broad Neutralizing Activity. Clin Vaccine Immunol. 2013;21(2):174–180. doi: 10.1128/CVI.00662-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Griffiths P., Plotkin S., Mocarski E., Pass R., Schleiss M., Krause P. Desirability and feasibility of a vaccine against cytomegalovirus. Vaccine. 2013;31:B197–B203. doi: 10.1016/j.vaccine.2012.10.074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Schleiss, MR. Cytomegalovirus Vaccine Development. Current Topics in Microbiology and Immunology: Springer Science + Business Media; 2008. p. 361-82. [DOI] [PMC free article] [PubMed]
  • 70.Plotkin S. The history of vaccination against cytomegalovirus. Med Microbiol Immunol. 2015;204(3):247–254. doi: 10.1007/s00430-015-0388-z. [DOI] [PubMed] [Google Scholar]
  • 71.Drysdale S.B., Sande C.J., Green C.A., Pollard A.J. RSV vaccine use – the missing data. Expert Rev Vaccines. 2016;15(2):149–152. doi: 10.1586/14760584.2016.1114419. [DOI] [PubMed] [Google Scholar]
  • 72.Kapikian A.Z., Mitchell R.H., Chanock R.M., Shvedoff R.A., Stewart C.E. An epidemiologic study of altered clinical reactivity to respiratory syncytial (RS) virus infection in children previously vaccinated with an inactivated RS virus vaccine. Am J Epidemiol. 1969;89(4):405–421. doi: 10.1093/oxfordjournals.aje.a120954. [DOI] [PubMed] [Google Scholar]
  • 73.Kim H.W., Canchola J.G., Brandt C.D., Pyles G., Chanock R.M., Jensen K. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol. 1969;89(4):422–434. doi: 10.1093/oxfordjournals.aje.a120955. [DOI] [PubMed] [Google Scholar]
  • 74.Polack F.P., Teng M.N., Collins P.L., Prince G.A., Exner M., Regele H. A role for immune complexes in enhanced respiratory syncytial virus disease. J Exp Med. 2002;196(6):859–865. doi: 10.1084/jem.20020781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Graham B.S., Modjarrad K., McLellan J.S. Novel antigens for RSV vaccines. Curr Opin Immunol. 2015;35:30–38. doi: 10.1016/j.coi.2015.04.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.McLellan J.S., Chen M., Leung S., Graepel K.W., Du X., Yang Y. Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science. 2013;340(6136):1113–1117. doi: 10.1126/science.1234914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Rappuoli R., Bottomley M.J., D’Oro U., Finco O., De Gregorio E. Reverse vaccinology 2.0: Human immunology instructs vaccine antigen design. J Exp Med. 2016;213(4):469–481. doi: 10.1084/jem.20151960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Jones L.H. Recent advances in the molecular design of synthetic vaccines. Nat Chem. 2015;7(12):952–960. doi: 10.1038/nchem.2396. [DOI] [PubMed] [Google Scholar]
  • 79.Mejias A., Garcia-Maurino C., Rodriguez-Fernandez R., Peeples M.E., Ramilo O. Development and clinical applications of novel antibodies for prevention and treatment of respiratory syncytial virus infection. Vaccine. 2017;35(3):496–502. doi: 10.1016/j.vaccine.2016.09.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Tregoning J.S., Kinnear E. Using Plasmids as DNA Vaccines for Infectious Diseases. Microbiol Spectr. 2014;2(6) doi: 10.1128/microbiolspec.PLAS-0028-2014. [DOI] [PubMed] [Google Scholar]
  • 81.Ulmer J.B., Geall A.J. Recent innovations in mRNA vaccines. Curr Opin Immunol. 2016;41:18–22. doi: 10.1016/j.coi.2016.05.008. [DOI] [PubMed] [Google Scholar]
  • 82.Goodridge H.S., Ahmed S.S., Curtis N., Kollmann T.R., Levy O., Netea M.G. Harnessing the beneficial heterologous effects of vaccination. Nat Rev Immunol. 2016;16(6):392–400. doi: 10.1038/nri.2016.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Kang M.C., Choi D.H., Choi Y.W., Park S.J., Namkoong H., Park K.S. Intranasal Introduction of Fc-Fused Interleukin-7 Provides Long-Lasting Prophylaxis against Lethal Influenza Virus Infection. J Virol. 2016;90(5):2273–2284. doi: 10.1128/JVI.02768-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Mallto E., Carfi A., Bottomley M.J. Protein Crystallography in Vaccine Research and Development. Int J Mol Sci. 2015;16(6):13106–13140. doi: 10.3390/ijms160613106. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Infection are provided here courtesy of Elsevier

RESOURCES