Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2003 Mar 21;14(5):165–167. doi: 10.1016/0968-0004(89)90266-1

How ‘hidden’ reading frames are expressed

Roberto Cattaneo 1
PMCID: PMC7172427  PMID: 2773038

Abstract

Secondary reading frames, ‘hidden’ under other reading frames, are used for coordinated expression of proteins in several eukaryotic viruses. In some genes, ribosomal frameshifting and initiation or reinitiation of protein synthesis on internal AUG codons are translational mechanisms allowing access to such ‘hidden’ reading frames. In others, secondary reading frames are translated from alternatively spliced or edited mRNAs.

References

  • 1.Bos J.L., Polder L.J., Bernards R., Schrier P.I., van den Ellen P.J., van der Eb A.J., Ormondt H. Cell. 1981;27:121–131. doi: 10.1016/0092-8674(81)90366-4. [DOI] [PubMed] [Google Scholar]
  • 2.Shaw M.W., Choppin P.W., Lamb R.A. Vol. 80. 1983. pp. 4879–4883. (Proc. Natl Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Giorgi C., Blumberg B.M., Kolakofsky D. Cell. 1983;35:829–836. doi: 10.1016/0092-8674(83)90115-0. [DOI] [PubMed] [Google Scholar]
  • 4.Kozak M. Cell. 1986;47:481–483. doi: 10.1016/0092-8674(86)90609-4. [DOI] [PubMed] [Google Scholar]
  • 5.Jacks T., Varmus H.E. Science. 1985;230:1237–1242. doi: 10.1126/science.2416054. [DOI] [PubMed] [Google Scholar]
  • 6.Jacks T., Madhani H.D., Masiarz F.R., Varmus H.E. Cell. 1988;55:447–458. doi: 10.1016/0092-8674(88)90031-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Wilson W., Malim M.H., Mellor J., Kingsman A.J., Kingsman S.M. Nucleic Acids Res. 1986;14:7001–7016. doi: 10.1093/nar/14.17.7001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Schlicht H-J., Radziwill G., Schaller H. Cell. 1989;56:85–92. doi: 10.1016/0092-8674(89)90986-0. [DOI] [PubMed] [Google Scholar]
  • 9.Thomas K.R., Capecchi M.R. Nature. 1986;324:34–38. doi: 10.1038/324034a0. [DOI] [PubMed] [Google Scholar]
  • 10.Brierley I., Boursnell M.E.G., Binns M.M., Bilimoria B., Block V.C., Brown T.D.K., Inglis S.C. EMBO J. 1987;6:3779–3785. doi: 10.1002/j.1460-2075.1987.tb02713.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Weiss R.B., Dunn D.M., Atkins J.F., Gesteland R.F. Vol. 52. 1987. pp. 687–693. (CSH Symp. Quant. Biol.). [DOI] [PubMed] [Google Scholar]
  • 12.Liu C-C., Simonsen C.C., Levinson A.D. Nature. 1984;309:82–85. doi: 10.1038/309082a0. [DOI] [PubMed] [Google Scholar]
  • 13.Pelletier J., Sonenberg N. Nature. 1988;334:320–325. doi: 10.1038/334320a0. [DOI] [PubMed] [Google Scholar]
  • 14.Curran J.A., Kolakofsky D. EMBO J. 1988;7:2869–2874. doi: 10.1002/j.1460-2075.1988.tb03143.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Chang L.J., Pryciak P., Ganem D., Varmus H. Nature. 1989;337:364–368. doi: 10.1038/337364a0. [DOI] [PubMed] [Google Scholar]
  • 16.Becerra S.P., Rose J.A., Hardy M., Barovoy B.M., Andrson C.W. Vol. 82. 1985. pp. 7919–7923. (Proc. Natl Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Curran J.A., Kolakofsky D. EMBO J. 1988;7:245–251. doi: 10.1002/j.1460-2075.1988.tb02806.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Edery I., Petryshyn R., Sonenberg N. Cell. 1989;56:303–312. doi: 10.1016/0092-8674(89)90904-5. [DOI] [PubMed] [Google Scholar]
  • 19.Breitbart R.E., Andreadis A., Nadal-Ginard H. Annu. Rev. Biochem. 1987;56:467–495. doi: 10.1146/annurev.bi.56.070187.002343. [DOI] [PubMed] [Google Scholar]
  • 20.Thomas S.M., Lamb R.A., Paterson R.G. Cell. 1988;54:891–902. doi: 10.1016/S0092-8674(88)91285-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Cattaneo R., Kaelin K., Baczko K., Billeter M.A. Cell. 1989;56:759–764. doi: 10.1016/0092-8674(89)90679-x. [DOI] [PubMed] [Google Scholar]
  • 22.Powell L.M., Wallis S.C., Pease R.J., Edwards Y.H., Knott T.J., Scott J. Cell. 1987;50:831–840. doi: 10.1016/0092-8674(87)90510-1. [DOI] [PubMed] [Google Scholar]
  • 23.Chen S-H., Habib G., Yang C.Y., Gu Z.N., Lee B.R., Weng S.A., Silberman S.R., Cai S.J., Deslypere J.P., Rossenev M., Gotto A.M., Li W.H., Chan L. Science. 1987;238:363–366. doi: 10.1126/science.3659919. [DOI] [PubMed] [Google Scholar]
  • 24.Weiner A.M., Weber K. Nature (London), New Biol. 1971;234:206–209. doi: 10.1038/newbio234206a0. [DOI] [PubMed] [Google Scholar]
  • 25.Pelham H.R.B. Nature. 1978;272:469–471. doi: 10.1038/272469a0. [DOI] [PubMed] [Google Scholar]
  • 26.Benne R., van den Burg J., Brakenhoff J.P.J., Sloof P., van Boom J.H., Tromp M.C. Cell. 1986;46:819–826. doi: 10.1016/0092-8674(86)90063-2. [DOI] [PubMed] [Google Scholar]
  • 27.Feagin J.E., Jasmer D.P., Stuart K. Cell. 1987;49:337–345. doi: 10.1016/0092-8674(87)90286-8. [DOI] [PubMed] [Google Scholar]
  • 28.Feagin J.E., Abraham J.M., Stuart K. Cell. 1988;53:413–422. doi: 10.1016/0092-8674(88)90161-4. [DOI] [PubMed] [Google Scholar]
  • 29.Shaw J.M., Feagin J.E., Stuart K., Simpson L. Cell. 1988;53:401–411. doi: 10.1016/0092-8674(88)90160-2. [DOI] [PubMed] [Google Scholar]
  • 30.Maizels N., Weiner A. Nature. 1988;334:469–470. doi: 10.1038/334469a0. [DOI] [PubMed] [Google Scholar]
  • 31.Kozak M. J. Cell. Biol. 1988;107:1–7. doi: 10.1083/jcb.107.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Clerc R.G., Corcoran L.M., LeBonite J.H., Baltimore D., Sharp P.A. Genes Dev. 1988;2:1570–1581. doi: 10.1101/gad.2.12a.1570. [DOI] [PubMed] [Google Scholar]
  • 33.Berkhout B., van Duin J. Nucleic Acids Res. 1985;13:6955–6968. doi: 10.1093/nar/13.19.6955. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Trends in Biochemical Sciences are provided here courtesy of Elsevier

RESOURCES