Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2005 Mar 25;18(4):253–267. doi: 10.1016/S0882-4010(05)80002-6

Mouse neuropathogenic poliovirus strains cause damage in the central nervous system distinct from poliomyelitis

Matthias Gromeier 1,*, Hui-Hua Lu 1, Eckard Wimmer 1
PMCID: PMC7172458  PMID: 7476091

Abstract

Poliomyelitis as a consequence of poliovirus infection is observed only in primates. Despitea host range restricted to primates, experimental infection of rodents with certain genetically well defined poliovirus strains produces neurological disease. The outcome of infection of mice with mouse-adapted poliovirus strains has been described previously mainly in terms of paralysis and death, and it was generally assumed that these strains produce the same disease syndromes in normal mice and in mice transgenic for the human poliovirus receptor (hPVR-tg mice). We report a comparison of the clinical course and the histopathological features of neurological disease resulting from intracerebral virus inoculation in normal micewith those of murine poliomyelitis in hPVR-tg mice. The consistent pattern of clinical deficits in poliomyelitic transgenic mice contrasted with highly variable neurologic disease that developed in mice infected with different mouse-adapted polioviruses. Histopathological analysis showed a diffuse encephalomyelitis induced by specific poliovirus serotype 2 isolates in normal mice, that affected neuronal cell populations without discrimination, whereas in hPVR-tg animals, damage was restricted to spinal motor neurons. Mouse neurovirulent strains of poliovirus type 2 differed from mouse neurovirulent poliovirus type 1 derivatives in their ability to induce CNS lesions. Our findings indicate that the characteristic clinical appearance and highly specific histopathological features of poliomyelitis are mediated by the hPVR. Our data lead us to conclude that the tissue tropism of mouse-adapted poliovirus strains in normal mice is fundamentally different from that of poliovirus in hPVR-tg mice and primates, and that this is indicative of an as yet unknown mechanism of adsorption and uptake of the virus into cells of the murine CNS.

References

  • 1.Sicinski P., Rowinski J., Warchol J.B. Poliovirus type 1 enters the human host through intestinal M cells. Gastroenterology. 1990;98:56–58. doi: 10.1016/0016-5085(90)91290-m. [DOI] [PubMed] [Google Scholar]
  • 2.Bodian D. Emerging concept of poliomyelitis infection. Science. 1955;122:105–108. doi: 10.1126/science.122.3159.105. [DOI] [PubMed] [Google Scholar]
  • 3.Blinzinger K., Simon J., Magrath D., Boulger L. Poliovirus crystals within the endoplasmic reticulum of endothelial and mononuclear cells in the monkey spinal cord. Science. 1969;163:1336–1337. doi: 10.1126/science.163.3873.1336. [DOI] [PubMed] [Google Scholar]
  • 4.Bodian D. Poliomyelitis. In: Minckler J., editor. Vol. 3. McGraw-Hill; New York: 1972. pp. 2323–2344. (Pathology of the Nervous System). [Google Scholar]
  • 5.Kojima H., Furuta Y., Fujita M., Fujioka Y., Nagashima K. Onuf's motoneuron is resistant to poliovirus. J Neurol Sci. 1989;93:85–92. doi: 10.1016/0022-510x(89)90163-9. [DOI] [PubMed] [Google Scholar]
  • 6.Koike S., Horie H. Ise. The poliovirus receptor protein is produced both as membrane-bound and secreted forms. EMBO J. 1990;9:3217–3224. doi: 10.1002/j.1460-2075.1990.tb07520.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Mendelsohn C.L., Wimmer E., Racaniello V.R. Cellular receptorfor poliovirus: Molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell. 1989;56:855–865. doi: 10.1016/0092-8674(89)90690-9. [DOI] [PubMed] [Google Scholar]
  • 8.Wimmer E., Harber J.J., Bibb J.A., Gromeier M., Lu H.H., Bernhardt G. The poliovirus receptors. In: Wimmer E., editor. Cellular Receptors for Animal Viruses. Cold Spring Harbor Press; Cold Spring Harbor, NY: 1994. in press. [Google Scholar]
  • 9.Bernhardt G., Bibb J.A., Bradley J., Wimmer E. Molecular characterization of the cellular receptor for poliovirus. Virology. 1994;199:105–113. doi: 10.1006/viro.1994.1102. [DOI] [PubMed] [Google Scholar]
  • 10.Koike S., Taya C., Kurata T., Abe S., Ise I., Yonekawa H., Nomoto A. Vol. 88. 1991. Transgenic mice susceptible to poliovirus; pp. 951–955. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Ren R., Costantini F., Gorgacz E.J., Lee J.J., Racaniello V.R. Transgenic mice expressing a human poliovirus receptor: a new model for poliomyelitis. Cell. 1990;63:353–362. doi: 10.1016/0092-8674(90)90168-e. [DOI] [PubMed] [Google Scholar]
  • 12.Koike S., Ise I., Sato H., Yonekawa H., Gotoh O., Nomoto A. A second gene for the african green monkey poliovirus receptor that has no putative N-glycosylation site in the functional N-terminalimmunoglobulin-like domain. J Virol. 1992;66:7059–7066. doi: 10.1128/jvi.66.12.7059-7066.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Morrison M.E., Racaniello V.R. Molecular cloning and expression of a murine homolog of the human poliovirus receptor gene. J Virol. 1992;66:2807–2813. doi: 10.1128/jvi.66.5.2807-2813.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Armstrong C. The experimental transmission of poliomyelitis to the eastern cotton rat, Sigmodon hispidus hispidus. Public Health Rep. 1939;54:1719–1721. [Google Scholar]
  • 15.Armstrong C. Successful transfer of the Lansing strain of poliomyelitis virus from the cotton rat to the white mouse. Public Health Rep. 1939;54:2302–2305. [Google Scholar]
  • 16.Jubelt B., Gallez-Hawkins G., Narayan O., Johnson R.T. Pathogenesis of human poliovirus infection in mice. I. Clinical and pathological studies. J Neuropathol Exp Neurol. 1980;39:138–149. doi: 10.1097/00005072-198003000-00003. [DOI] [PubMed] [Google Scholar]
  • 17.LaMonica N., Meriam C., Racaniello V.R. Mapping of sequences required for mouse neurovirulence of poliovirus type 2 Lansing. J Virol. 1986;57:515–525. doi: 10.1128/jvi.57.2.515-525.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Martin A., Wychowski C., Couderc T., Crainic R., Hogle J., Girard M. Engineering a poliovirus type 2 antigenic site on a type 1 capsid results in a chimaeric virus which is neurovirulent for mice. EMBO J. 1988;7:2839–2847. doi: 10.1002/j.1460-2075.1988.tb03140.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Murray M.G., Bradley J., Yang X.F., Wimmer E., Moss E.G., Racaniello V.R. Poliovirus host range is determined by a short amino acid sequence in neutralization antigenic site 1. Science. 1988;241:213–215. doi: 10.1126/science.2838906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Couderc T., Hogle J., LeBlay H., Horaud F., Blondel B. Molecular characterization of mouse-virulent poliovirus type 1 Mahoney mutants: involvement of residues of polypeptides VP1 and VP2 located on the inner surface of the capsid protein shell. J Virol. 1993;67:3808–3817. doi: 10.1128/jvi.67.7.3808-3817.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Moss E.G., Racaniello V.R. Host range determinants located on the interior of the poliovirus capsid. EMBO J. 1991;10:1067–1074. doi: 10.1002/j.1460-2075.1991.tb08046.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Pevear D.C., Oh C.K., Cunningham L.L., Calenoff M., Jubelt B. Localization of genomic regions specific for the attenuated, mouse-adapted poliovirus type 2 strain W-2. J Gen Virol. 1990;71:43–52. doi: 10.1099/0022-1317-71-1-43. [DOI] [PubMed] [Google Scholar]
  • 23.Wimmer E., Hellen C.U.T., Cao X.M. Genetics of Poliovirus. Ann Rev Genet. 1993;27:353–436. doi: 10.1146/annurev.ge.27.120193.002033. [DOI] [PubMed] [Google Scholar]
  • 24.Lustig S., Jackson A.C., Hahn C.S., Griffin D.E., Strauss E.G., Strauss J.H. Molecular basis of Sindbis Virus neurovirulence in mice. J Virol. 1988;62:2329–2336. doi: 10.1128/jvi.62.7.2329-2336.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Russell D.L., Dalrymple J.M., Johnston R.E. Sindbis virus mutations which coordinately affect glycoprote in processing, penetration, and virulence in mice. J Virol. 1989;63:1619–1629. doi: 10.1128/jvi.63.4.1619-1629.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Glasgow G.M., Sheahan B.J., Atkins G.J., Wahlberg J.M., Salminen A., Liljestroem P. Two mutations in the envelope glycoprotein E2 of Semliki Forest Virus affecting the maturation and entry patterns of the virus alter pathogenicity for mice. Virology. 1991;185:741–748. doi: 10.1016/0042-6822(91)90545-m. [DOI] [PubMed] [Google Scholar]
  • 27.Pletnev A.G., Bray M., Lai C.J. Chimeric tick-borne encephalitis and Dengue type 4 viruses: effects of mutations on neurovirulence in mice. J Virol. 1993;67:4956–4963. doi: 10.1128/jvi.67.8.4956-4963.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Kawano H., Rostapshov V., Rosen L., Lai C.J. Genetic determinants of Dengue type 4 virus neurovirulence for mice. J Virol. 1993;67:6567–6575. doi: 10.1128/jvi.67.11.6567-6575.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Li S., Schulman J., Itamura S., Palese P. Glycosylation of neuraminidase determines the neurovirulence of Influenza A/WSN/33 virus. J Virol. 1993;67:6667–6673. doi: 10.1128/jvi.67.11.6667-6673.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Seif I., Coulon P., Rollin P.E., Flamand A. Rabies virulence: effect on pathogenicity and sequence characterization of rabies virus mutations affecting antigenic site III of the glycoprotein. J Virol. 1985;53:926–934. doi: 10.1128/jvi.53.3.926-934.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.DesGroseillers L., Barette M., Jolicoeur P. Physical mapping of the paralysis-inducing determinant of a wild mouse ecotropic neurotropic virus. J Virol. 1984;52:356–363. doi: 10.1128/jvi.52.2.356-363.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Fazakerley J.K., Parker S.E., Bloom F., Buchmeier M.J. The V5A13.1 envelope glycoprotein deletion mutant of mouse hepatitis virus type 4 is neuroattenuated by its reduced rate of spread in the centralnervous system. Virology. 1992;187:178–188. doi: 10.1016/0042-6822(92)90306-A. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Spriggs D.R., Bronson R.T., Fields B.N. Hemagglutinin variants of Reovirus type 3 have altered central nervous system tropism. Science. 1983;220:505–507. doi: 10.1126/science.6301010. [DOI] [PubMed] [Google Scholar]
  • 34.Rodriguez M., Roos R.P. Pathogenesis of early and late disease in mice infected with Theiler's virus, using intratypic recombinant GDVII/DA viruses. J Virol. 1992;66:217–225. doi: 10.1128/jvi.66.1.217-225.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Paquette Y., Hanna Z., Savard P., Brousseau R., Robitaille Y., Jolicoeur P. Vol. 86. 1989. Retrovirus-induced murine motor neuron disease: mapping the determinant of spongiform degeneration within the envelope gene; pp. 3896–3900. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Tyler K.L., Bronson F.I.T., Brandt Byers K., Fields B. Molecular basis of viral neurotropism. Neurology. 1985;35:88–92. doi: 10.1212/wnl.35.1.88. [DOI] [PubMed] [Google Scholar]
  • 37.Li C.I.D., Schaeffer M. Vol. 87. 1954. Isolation of a non-neurotropic variant of type 1 poliomyelitis virus; pp. 148–153. (Proc Soc Exp Biol Med). [DOI] [PubMed] [Google Scholar]
  • 38.Lu H.H., Yang C.F., Murdin A.D., Harber J.J., Kew O.M., Wimmer E. Mouse-neurovirulence determinants of poliovirus type 1 strain LS-a map to the coding regions of capsid protein VP1 and proteinase 2APro. J Virol. 1994;68:7507–7515. doi: 10.1128/jvi.68.11.7507-7515.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Koprowski H., Norton T.W., Jervis G.A. Vol. 24. 1951. Studies on rodent adapted poliomyelitis virus. I. Cerebral resistance induced in the rhesus monkey; p. 92. (Bacteriological Proceedings). [Google Scholar]
  • 40.Schlesinger R.W., Morgan J.M., Olitsky P.K. Transmission to rodents of Lansing type poliomyelitis virus originating in the Middle East. Science. 1943;98:452–454. doi: 10.1126/science.98.2551.452. [DOI] [PubMed] [Google Scholar]
  • 41.Van Prooijen-Knegt A.C., Van Hoek J.F.M., Bauman J.G.J., Van Duijn P., Wool I.G., Van der Ploeg M. In situ hybridization of DNA sequences in human metaphase chromosomes visualized by an indirect fluorescent immunocytochemical procedure. Exp Cell Res. 1982;141:397–407. doi: 10.1016/0014-4827(82)90228-2. [DOI] [PubMed] [Google Scholar]
  • 42.Luna L.G. 3rd edn. Mc Graw-Hill; New York: 1968. (Manual of Histological Staining Methods of the American Armed Forces Institute of Pathology). [Google Scholar]
  • 43.Murdin A.D., Lu H.H., Murray M.G., Wimmer E. Poliovirus antigenic hybrids simultaneously expressing antigenic determinants from all three serotypes. J Gen Virol. 1992;73:607–611. doi: 10.1099/0022-1317-73-3-607. [DOI] [PubMed] [Google Scholar]
  • 44.Jubelt B., Meagher J.B. Poliovirus infection of cyclophosphamide-treated mice results in persistence and late paralysis: I. Clinical, pathologic, and immunologic studies. Neurology. 1984;34:486–493. doi: 10.1212/wnl.34.4.486. [DOI] [PubMed] [Google Scholar]
  • 45.Couderc T., Guinguene B., Horaud F., Aubert-Combioscu A., Crainic R. Molecular pathogenesis of type 2 poliovirus in mice. Eur J Epidemiol. 1989;5:270–273. doi: 10.1007/BF00144825. [DOI] [PubMed] [Google Scholar]
  • 46.Hogle J.M., Chow M., Filman D.J. The three-dimensional structure of poliovirus at 2.9 Å resolution. Science. 1985;229:1358–1365. doi: 10.1126/science.2994218. [DOI] [PubMed] [Google Scholar]
  • 47.Minor P.D. Antigenic structure of picornaviruses. Curr Top Immunol Microbiol. 1990;161:121–154. doi: 10.1007/978-3-642-75602-3_5. [DOI] [PubMed] [Google Scholar]
  • 48.Hung T.P., Sung S.M., Liang H.C., Landsborough D., Green I.J. Radiculomyelitis following acute haemorrhagic conjunctivitis. Brain. 1967;99:771–790. doi: 10.1093/brain/99.4.771. [DOI] [PubMed] [Google Scholar]
  • 49.Schmidt N.J., Lennette E.H., Ho H.H. An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis. 1974;129:304–309. doi: 10.1093/infdis/129.3.304. [DOI] [PubMed] [Google Scholar]
  • 50.Melnick J.L. Enterovirus type 71 infections: a varied clinical pattern sometimes mimicking paralytic poliomyelitis. Rev Infect Dis. 1984;6:S387–S390. doi: 10.1093/clinids/6.supplement_2.s387. [DOI] [PubMed] [Google Scholar]

Articles from Microbial Pathogenesis are provided here courtesy of Elsevier

RESOURCES