Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 11;189(2):483–492. doi: 10.1016/0042-6822(92)90572-7

Localization of the virus neutralizing and hemagglutinin epitopes of E1 glycoprotein of rubella virus

Helena Chaye , Pele Chong , Brian Tripet , Brad Brush , Shirley Gillam ∗,1
PMCID: PMC7172486  PMID: 1379391

Abstract

Current serological assays using whole rubella virus (RV) as a target antigen for detecting RV-specific antibodies fail to define specific RV proteins and antigenic determinants such as hemagglutinin (HA) and virus-neutralizing (VN) epitopes of rubella virus. A panel of El deletion mutants and a subset of E1-specific monoclonal antibodies (MAb) were used for the initial analysis of HA and VN epitopes of E1 glycoprotein. A peptide region (E1193 to E1269.) was found to contain HA and VN epitopes. Using both overlapping synthetic peptides and truncated fusion proteins within this region, the HA epitope defined by MAb 3D9F mapped to amino acid residues El214 to El240, while two VN epitopes defined by MAb 211391-1 and MAb 16A1 OE mapped to amino acid residues El 214 to E1233 and E1219 to E1233, respectively. The epitopes defined in this study are recognized by antibody whether or not the epitopes are glycosylated.

References

  1. Alexander S., Elder J.H. Carbohydrate dramatically influences immune reactivity of antiserum to viral glycoprotein antigens. Science. 1984;226:1328–1330. doi: 10.1126/science.6505693. [DOI] [PubMed] [Google Scholar]
  2. Andersson S., Davis D.L., Dahlback H., Jornvall H., Russell D.W. Cloning, structure and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J. Biol. Chem. 1989;264:8222–8229. [PubMed] [Google Scholar]
  3. Chantler J.K., Ford D.K., Tingle A.J. Persistent rubella infection and rubella-associated arthritis. Lancet. 1982;1:13232. doi: 10.1016/s0140-6736(82)92398-4. [DOI] [PubMed] [Google Scholar]
  4. Chaye H., Mauracher C., Tingle A., Gillam S. Cellular and humoral immune responses to rubella virus structural proteins E1, E2 and C. J. Clinical Microbiology. 1992 doi: 10.1128/jcm.30.9.2323-2329.1992. submitted to. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clarke D.M., Loo T.W., Hui I., Chong P., Gillam S. Nucleotide sequence and in vitro expression of rubella virus 24 S subgenomic messenger RNA encoding the structural proteins E1, E2 and C. Nucleic Acids Res. 1987;15:3041–3057. doi: 10.1093/nar/15.7.3041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dietzschold B., Gore M., Marchadier D., Niu H.S., Bunschoten H.M., Otvos L., Jr., Wunner W.H., Ertl H.C.J., Osterhaus A.D.M.E., Koprowski H. Structural and immunological characterization of a linear virus-neutralizing epitope of the rabies virus glycoprotein and its possible use in a synthetic vaccine. J. Virol. 1990;64:3804–3909. doi: 10.1128/jvi.64.8.3804-3809.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Erlich H.A., editor. PCR: Principles and Applications for DNA Amplification. Stockton Press; New York: 1989. [Google Scholar]
  8. Fukuda A., Hisshiyama M., Umino Y., Suguira A. Immunocytochemical focus assay for potency determination of measles-mumps-rubella trivalent vaccine. J. Virol. Methods. 1987;15:279–284. doi: 10.1016/0166-0934(87)90150-9. [DOI] [PubMed] [Google Scholar]
  9. Galgre G., Howe S., Milstein C., Butcher G.W., Howard I.C. Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature. 1977;266:550–552. doi: 10.1038/266550a0. [DOI] [PubMed] [Google Scholar]
  10. Green K.Y., Dorsett P.H. Rubella virus antigen: Localization of epitopes involved in hemagglutination and neutralization by using monoclonal antibodies. J. Virol. 1986;57:803–898. doi: 10.1128/jvi.57.3.893-898.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hobman T.C., Shukin R., Gillam S. Translocation of rubella virus glycoprotein E1 into the endoplasmic reticulum. J. Virol. 1988;62:4259–4264. doi: 10.1128/jvi.62.11.4259-4264.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hobman T.C., Lundstrom M.L., Gillam S. Processing and intracellular transport of rubella virus structural proteins in COS cells. Virology. 1990;178:122–133. doi: 10.1016/0042-6822(90)90385-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hobman T.C., Qiu A.Y., Chaye H.H., Gillam S. Analysis of rubella virus E1 glycosylation mutants expressed in COS cells. Virology. 1991;181:768–772. doi: 10.1016/0042-6822(91)90915-x. [DOI] [PubMed] [Google Scholar]
  14. Ho-Terry L., Cohen A. The role of hemagglutination and immunological reactivity of rubella virus. Arch. Virol. 1984;79:139–146. doi: 10.1007/BF01310807. [DOI] [PubMed] [Google Scholar]
  15. Ho-Terry L., Cohen A. Rubella virus hemagglutinin: Association with a single virion glycoprotein. Arch. Virol. 1985;84:207–215. doi: 10.1007/BF01378973. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U.K. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Laver W.G., Air G.M., Webster R.G., Smith-Gill S.J. Epitopes on protein antigen: Misconceptions and realities. Cell. 1990;61:553–556. doi: 10.1016/0092-8674(90)90464-p. [DOI] [PubMed] [Google Scholar]
  18. Libhaber H. Measurement of rubella antibody by hemagglutination inhibition. I. Variables affecting rubella hemagglutination. J. Immunol. 1970;104:818–825. [PubMed] [Google Scholar]
  19. Long L., Portetelle D., Ghysdael J., Gonze M., Burny A., Meulemans G. Monoclonal antibodies to hemagglutinin-neuraminidase and fusion glycoprotein of Newcastle disease virus: Relationship between glycosylation and reactivity. J. Virol. 1986;57:1198–1202. doi: 10.1128/jvi.57.3.1198-1202.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Maniatis T., Fritsch E.F., Sambrook J. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1982. (Molecular cloning: a laboratory manual). [Google Scholar]
  21. Marvin L.W. Chronic progressive panencephalitis due to rubella virus stimulating subacute sclerosing panencephalitis. New Engl. J. Med. 1975;292:994. doi: 10.1056/NEJM197505082921903. [DOI] [PubMed] [Google Scholar]
  22. Merrifield R.B. Solid phase peptide synthesis. Adv. Enzymol. 1969;32:221–296. doi: 10.1002/9780470122778.ch6. [DOI] [PubMed] [Google Scholar]
  23. Mitchell L.A., Zhang T., Ho M., Decarie D., Tingle A.J., Zrein M., Lacroix M. Characterization of rubella-specific antibody responses using a new synthetic peptide-based enzyme-linked immunosorbent assay. J. Clin. Micro. 1992 doi: 10.1128/jcm.30.7.1841-1847.1992. in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Oker-Blom C., Kalkinnen N., Kaariainen L., Pettersson R.F. Rubella virus contains one capsid protein and three envelope glycoproteins E1, E2a and E2b. J. Virol. 1983;46:964–973. doi: 10.1128/jvi.46.3.964-973.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Oker-Blom C., Ulmanen I., Kaariainen L., Pettersson R.F. Rubella virus 40S genome RNA specifies a 24S sugenomic mRNA that codes for a precursor to structural proteins. J. Virol. 1984;49:403–408. doi: 10.1128/jvi.49.2.403-408.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Oxford J.S., Obery B. Conquest of Vital Diseases. 1985. Infection caused by rubella reoviridae, retro, Norwalk, and coronaviruses; pp. 405–438. [Google Scholar]
  27. Porterfield J.S., Casals J., Chumakov M.P., Gaidamovich S.Y., Hannoun C., Holmes I.H., Horzinek M.C., Mussgay M., Okerblom N., Russel P.K., Trent D.W. Intervirology. 1978;9:128–145. doi: 10.1159/000148930. [DOI] [PubMed] [Google Scholar]
  28. Rosenberg A.H., Lade B.N., Chui D.S., Lin S.W., Dunn J.J., Studier F.W. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene. 1987;56:125–135. doi: 10.1016/0378-1119(87)90165-x. [DOI] [PubMed] [Google Scholar]
  29. Sanger S., Nicklen S., Coulson A.R. Vol. 74. 1977. DNA sequencing with chain-terminating inhibitors; pp. 5463–5467. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Studier F.W., Rosenberg A.H., Dunn I.J., Dubendorff J.W. Use of T7 RNA polymerase to direct the expression of cloned genes. In: Goeddel D.V., editor. Vol. 185. Academic Press; San Diego: 1990. pp. 60–89. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]
  31. Tada T., Okimura K. The role of antigen specific T-cell factors in the immune response. Adv. Immunol. 1980;27:1–87. doi: 10.1016/s0065-2776(08)60799-3. [DOI] [PubMed] [Google Scholar]
  32. Tang X.L., Tregear G.W., White D.O., Jackson D.C. Minimum requirement for immunogenic and antigenic activities of homologs of a synthetic peptide of influenza virus hemagglutinin. J. Virol. 1988;62:4745–4751. doi: 10.1128/jvi.62.12.4745-4751.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Terry G.M., Ho-Terry L., Londesborough P., Rees K.R. Localization of the rubella E1 epitopes. Arch. Virol. 1988;98:189–197. doi: 10.1007/BF01322168. [DOI] [PubMed] [Google Scholar]
  34. Tingle A.J., Yang T., Allen M., Kettyls G.D., Larke R.P.B., Schulzer M. Prospective immunological assessment of arthritis induced by rubella vaccine. Infect. Immun. 1983;40:22–28. doi: 10.1128/iai.40.1.22-28.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Van Regenmortel M.H.V. The structure of vital epitopes. In: Van Regenmortel M.H.V., Neurath A.R., editors. Vol. 2. 1990. (Immunochemistry of Virus). [Google Scholar]
  36. Waxham M.N., Wolinsky J.S. Detailed immunologic analysis of the structural polypeptides of rubella virus using monoclonal antibodies. Virol. 1987;143:153–156. doi: 10.1016/0042-6822(85)90104-7. [DOI] [PubMed] [Google Scholar]
  37. Wolinsky J.S., McCarthy M., Allen-Cannady O., Moore W.T., Jin R., Cao S.N., Lovett A., Simmons D. Monoclonal antibody-defined epitope map of expressed rubella virus protein domains. J. Virol. 1991;65:3986–3994. doi: 10.1128/jvi.65.8.3986-3994.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wright K.E., Salvato M.S., Buchmeier M.J. Neutralizing epitopes of lymphocyte choriomeningitis virus are conformational and require both glycosylation and disulfide bonds for expression. Virol. 1989;171:417–426. doi: 10.1016/0042-6822(89)90610-7. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES