Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Apr 7;48(2):55–61. doi: 10.1016/0753-3322(94)90076-0

Inhibitory effect of the oral immune response modifier, bestatin, on cell-mediated and cell-free HIV infection in vitro

AS Bourinbaiar 1, S Lee-Huang 1, K Krasinski 2, W Borkowsky 2
PMCID: PMC7172829  PMID: 7919106

Abstract

The antiviral effect of the immunomodulating anti-cancer agent, bestatin, was examined in vitro by exposing MT-4 lymphocytes to HIV in the presence of 10-fold dilutions of drug (range 100 μg-100 pg/ml). The reduction in infectivity was measured by p24 ELISA and compared to the effect of established anti-HIV drugs-azidothymidine (AZT) and dextran sulfate. The results indicate that low doses of bestatin (1 μg/ml) can completely inhibit viral infection resulting either from inoculation with free virus or coculture with infected lymphocytes. Unlike AZT or dextran sulfate, bestatin prevents HIV infection without interfering with the rate of cell growth. No appreciable decrease in HIV production was observed when chronically infected virus-producing T cell lines ie, H9, MOLT 4, HPB-ALL, 8E5 and MT -2 were treated with bestatin. Bestatin appears to act in the early stages of viral penetration, possibly through inhibition of lymphocyte-associated aminopeptidases.

Keywords: bestatin, HIV, T lymphocytes

References

  • 1.Umezawa H., Aoyagi T. Activities of proteinase inhibitors of.microbial origin. In: Barrett A.J., editor. Proteinases in Mammalian Cells and Tissues; Amsterdam; Amsterdam: Elsevier/North Holland Biomedical Press; 1977. p. 637. [Google Scholar]
  • 2.Aoyagi T., Suda H., Nagai M., Ogawa K., Suzuki J., Takeuchi T., Umezawa H. Aminopeptidase activities on the surface of mammalian cells. Biochim Biophys Acta. 1976;452:131. doi: 10.1016/0005-2744(76)90064-4. [DOI] [PubMed] [Google Scholar]
  • 3.Bourinbaiar A.S., Tan X., Nagorny R. Effect of the oral anticoagulant, warfarin, on HIV-1 replication and spread. AIDS. 1993;7:129. doi: 10.1097/00002030-199301000-00022. [DOI] [PubMed] [Google Scholar]
  • 4.Bourinbaiar A.S., Tan X., Nagorny R. Inhibitory effect of coumarins on HIV replication and cell-mediated or cellfree viral infection. Acta Viral. 1993;37:241. [PubMed] [Google Scholar]
  • 5.Kanaoka Y., Takahashi T., Nakayama H. A new fluorogenic substrate for aminopeptidases. Chem Pharm Bull. 1977;25:3126. doi: 10.1248/cpb.25.362. [DOI] [PubMed] [Google Scholar]
  • 6.Zimmerman M., Yurevicz E., Patel G. A new fluorogenic substrate for chymotrypsin. Anal Biochem. 1976;70:258. doi: 10.1016/s0003-2697(76)80066-8. [DOI] [PubMed] [Google Scholar]
  • 7.Mathé G. Bestatin, an aminopeptidase inhibitor with a multi-pharmacological function. Biomed & Pharmacother. 1991;45:49. doi: 10.1016/0753-3322(91)90122-a. [DOI] [PubMed] [Google Scholar]
  • 8.Ota K., Uzuka Y. Clinical trials of bestatin for leukemia and solid tumors. Biotherapy. 1992;4:205. doi: 10.1007/BF02174207. [DOI] [PubMed] [Google Scholar]
  • 9.Mathé G., Umezawa H., Misset J.L., Brienza S., Canon C., Musset M., Reizenstein P. Immunomodulating properties of bestatin in cancer patients. A phase II trial. Biomed & Pharmacother. 1986;40:379. [PubMed] [Google Scholar]
  • 10.Mathé G., Blazsek I., Canon C., Gil-Delgado M., Misset J.L. From experimental to clinical attempts in immunorestoration with bestatin and zinc. Comp Immunol Microbial Infect Dis. 1986;9:241. doi: 10.1016/0147-9571(86)90018-4. [DOI] [PubMed] [Google Scholar]
  • 11.Hording M., Gotzsche P.C., Dalh Christensen L., Bygbjerg I.C., Faber V. Double-blind trial of bestatin in HIV-positive patients. Biomed & Pharmacother. 1990;44:475. doi: 10.1016/0753-3322(90)90208-q. [DOI] [PubMed] [Google Scholar]
  • 12.Bourinbaiar A.S. HIV and gag. Nature. 1991;349:111. doi: 10.1038/349111b0. [DOI] [PubMed] [Google Scholar]
  • 13.Bourinbaiar A.S. Weight of HIV. AIDS Res Human Retrovir. 1992;8:1545. doi: 10.1089/aid.1992.8.1545. [DOI] [PubMed] [Google Scholar]
  • 14.Bourinbaiar A.S., Nagorny R., Tan X. Heaviness of HIV particles in quantum relation to infectiousness and responsiveness to interferon. In: Andrieu J.M., editor. Viral Quantitation in HIV Infection. John Libbey Eurotext; Paris: 1991. p. 41. [Google Scholar]
  • 15.Mitsuya H., Looney D.J., Kuno S., Ueno R., Wong-Staal F., Broder S. Dextran sulfate suppression of viruses of HIV family: inhibition of virion binding to CD4+ cells. Science. 1988;240:646. doi: 10.1126/science.2452480. [DOI] [PubMed] [Google Scholar]
  • 16.Mitsuya H., Weinhold K.J., Furman P.A. Vol. 82. 1985. 3′-Azido-3′deoxythymidine (BW A509U): An antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro; p. 7096. (Proc Nail Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Sakurada K., Imamura M., Kobayashi M. Inhibitory effect of bestatin on the growth of human leukemic cells. Acta Oncol. 1990;29:799. doi: 10.3109/02841869009093003. [DOI] [PubMed] [Google Scholar]
  • 18.Gronowicz E., Coutinho A. Selective triggering of B cell subpopulations by mitogens. Eur J Immunol. 1974;4:771. doi: 10.1002/eji.1830041113. [DOI] [PubMed] [Google Scholar]
  • 19.Palacios R., Sugawara I., Fernandez C. Dextran-sulfate: A mitogen for human T lymphocytes. J Immunol. 1982;128:621. [PubMed] [Google Scholar]
  • 20.Flexner C., Barditch-Grove P.A., Kornhauser D.M. Pharmacokinetics, toxicity, and activity of intravenous dextran sulfate in human immunodeficiency virus infection. Antimicrob Agents Chemother. 1991;35:2544. doi: 10.1128/aac.35.12.2544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Shibuya K., Chiba S., Hino M., Kitamura T., Miyagawa K., Takaku F., Miyazano K. Enhancing effect of ubenimex (bestatin) on proliferation and differentiation of hematopoietic progenitor cells, and the suppressive effect on proliferation of leukemic cell lines via peptidase regulation. Biomed & Pharmacother. 1991;45:71. doi: 10.1016/0753-3322(91)90125-d. [DOI] [PubMed] [Google Scholar]
  • 22.Abe F., Matsuda A., Schneider M., Talmadge J.E. Effects of bestatin on myelopoietic stem cells in normal and cyclophosphamide-treated mice. Cancer Immunol Immunother. 1990;32:75. doi: 10.1007/BF01754202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Wakabayashi Y., Hashimoto M., Saitoh K., Osawa H., Koike M., Hirose S. Effects of bestatin (ubenimex) on human T — cell colony formation. Anti-Cancer Drugs. 1991;2:39. doi: 10.1097/00001813-199102000-00005. [DOI] [PubMed] [Google Scholar]
  • 24.Lederman S., Gulick R., Chess L. Dextran sulfate and heparin interact with CD4 molecules to inhibit the binding of coat protein (gp120) of HIV. J Immunol. 1989;143:1149. [PubMed] [Google Scholar]
  • 25.Bourinbaiar A.S., Nagorny R. Association of anti-HIV-1 effect of dextran sulfate with prevention of lymphocyte-totrophoblast adhesion. Immunol Infect Dis. 1992;2:245. [Google Scholar]
  • 26.Korant B.D. Regulation of animal virus replication by protein cleavage. In: Reich E., Rifkin D.B., Shaw E., editors. Proteases and Biological Control. Cold Spring Harbor Laboratory; Cold Spring Harbor: 1975. p. 621. [Google Scholar]
  • 27.Andersen K.B. Cleavage fragments of the retrovirus surface protein gp70 during virus entry. J Gen Viral. 1987;68:2193. doi: 10.1099/0022-1317-68-8-2193. [DOI] [PubMed] [Google Scholar]
  • 28.Hattori T., Koito A., Takatsuki K., Kido H., Katunuma N. Involvement of tryptase-related cellular protease(s) in human immunodeficiency virus type 1 infection. FEBS Lett. 1989;248:48. doi: 10.1016/0014-5793(89)80429-6. [DOI] [PubMed] [Google Scholar]
  • 29.McCune J.M., Rabin L.B., Feinberg M.B., Lieberman M., Kosek J.C., Reyes G.R., Weissman I.L. Endoproteolytic cleavage of gpl60 is required for the activation of human immunodeficiency virus. Cell. 1988;53:55. doi: 10.1016/0092-8674(88)90487-4. [DOI] [PubMed] [Google Scholar]
  • 30.Kido H.A., Fukutomi N., Katunuma N. A novel membranebound serine esterase in human T4+ lymphocytes immunologically reactive with an antibody inhibiting syncytia induced by HIV-1: purification and characterization. J Biol Chem. 1990;265:21979. [PubMed] [Google Scholar]
  • 31.Avril L.E., di Martino-Ferrer M., Barin F., Gauthier F. Interactions between a membrane-associated serine protease of U-937 monocytes and peptides from V3 loop of the human immunodeficiency virus type 1 (HIV-1) gpl20 envelope glycoprotein. FEBS Lett. 1993;317:167. doi: 10.1016/0014-5793(93)81515-2. [DOI] [PubMed] [Google Scholar]
  • 32.Travis B.M., Dykers T.I., Hewgill D., Ledbetter J., Tsu T.T., Hu S.L., Lewis J.B. Functional roles of the V3 hypervariable region of HIV-1 gp160 in the processing of gp160 and in formation of syncytia in CD4+ cells. Virology. 1992;186:313. doi: 10.1016/0042-6822(92)90088-7. [DOI] [PubMed] [Google Scholar]
  • 33.Guy B., Geist M., Dott K., Spehner D., Kieny M.P., Lecocq J.P. A specific inhibitor of cysteine proteases impairs a Vifdependent modification of human immunodeficiency virus type 1 Env protein. J Virol. 1991;65:1325. doi: 10.1128/jvi.65.3.1325-1331.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Hallenberger S., Bosch V., Angliker H., Shaw E., Klenk H.D., Garten W. Inhibition of cleavage activation of HIV- I glycoprotein gp160. Nature. 1992;360:358. doi: 10.1038/360358a0. [DOI] [PubMed] [Google Scholar]
  • 35.Amoscato A.A., Alexander J.W., Babcock G.F. Surface aminopeptidase activity of human lymphocytes. I. Biochemical and biologic properties of intact cells. J Immunol. 1989;142:1245. [PubMed] [Google Scholar]
  • 36.Bauvois B. Murine thymocytes possess specific cell surface-associated exoaminopeptidase activities: preferential expression by immature CD4-CD8-subpopulations. Eur J Immunol. 1990;20:459. doi: 10.1002/eji.1830200302. [DOI] [PubMed] [Google Scholar]
  • 37.Ansorge S., Schon E., Kunz D. Membrane-bound peptidases of lymphocytes: functional implications. Biomed Biochem Acta. 1991;50:799. [PubMed] [Google Scholar]
  • 38.Grdisa M., Vitale L. Types and localization of aminopeptidases in different human blood cells. Int J Biochem. 1991;23:339. doi: 10.1016/0020-711x(91)90072-u. [DOI] [PubMed] [Google Scholar]
  • 39.Hendriks D., De Meester I., Umiel T., Vanhoof G., van Sande M., Scharpe S., Yaron A. Aminopeptidase P and dipeptidyl peptidase IV activity in human leukocytes and in stimulated lymphocytes. Clin Chim Acto. 1991;196:87. doi: 10.1016/0009-8981(91)90061-g. [DOI] [PubMed] [Google Scholar]
  • 40.Kenny A.J., Turner A.J. Elsevier; Amsterdam: 1987. Mammalian Ectoenzymes. [Google Scholar]
  • 41.Yeager C.L., Ashmun R.A., William R.K. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature. 1992;357:420. doi: 10.1038/357420a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Delmas B., Gelfi J., L'Haridon R., Vogel L.K., Sjostrom H., Noren O., Laude H. Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature. 1992;357:417. doi: 10.1038/357417a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Burley S.K., David P.R., Lipscomb W.N. Vol. 88. 1991. Leucine aminopeptidase: bestatin inhibition and a model for enzyme catalyzed peptide hydrolysis; p. 6916. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Taylor A., Peltier C.Z., Jahngen E.G., Jr., Laxman E., Szewczuk Z., Torre F.J. Use of azidobestatin as photoaffinity label to identify the active site peptide of leucine aminopeptidase. Biochemistry. 1992;31:4141. doi: 10.1021/bi00131a034. [DOI] [PubMed] [Google Scholar]
  • 45.Tieku S., Hooper N.M. Inhibition of aminopeptidases N, A and W. A re-evaluation of the actions of bestatin and inhibitors of angiotensin converting enzymes. Biochem Pharmacol. 1992;44:1725. doi: 10.1016/0006-2952(92)90065-Q. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Nara P., Tsai W.P., Kung H.F., Minassian A., Garrity R., Goudsmit J., Rimmelzwaan G. Universal cellular trophism? Nature. 1992;360:215. doi: 10.1038/360215b0. [DOI] [PubMed] [Google Scholar]
  • 47.Bourinbaiar A.S., Nagorny R. Inhibitory effect of natural interferon alpha on HIV transmission from epithelial cells to lymphocytes in vitro. Eur J Pharmacol. 1993;230:15. doi: 10.1016/0014-2999(93)90404-6. [DOI] [PubMed] [Google Scholar]
  • 48.Ishizuka M., Abe F., Abe S., Uchida K., Ikeda T., Ito N., Aoyagi K., Yamaguchi H., Takeuchi T. Enhancement of host resistance to opportunistic infections by ubenimex (bestatin) Adv Exp Med Biol. 1992;319:193. doi: 10.1007/978-1-4615-3434-1_20. [DOI] [PubMed] [Google Scholar]
  • 49.Aoyagi K., Itoh N., Abe F. Enhancement by ubenimex (bestatin) of host resistance to Candida albicans infection. J Antibiot. 1992;45:1778. doi: 10.7164/antibiotics.45.1778. [DOI] [PubMed] [Google Scholar]

Articles from Biomedicine & Pharmacotherapy are provided here courtesy of Elsevier

RESOURCES