Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Jan 7;244:461–486. doi: 10.1016/0076-6879(94)44034-4

[32] Families of cysteine peptidases

Neil D Rawlings, Alan J Barrett
PMCID: PMC7172846  PMID: 7845226

Publisher Summary

This chapter presents families of cysteine peptidases. The activity of all cysteine peptidases depends on a catalytic dyad of cysteine and histidine. The order of the cysteine and histidine residues (Cys/His or His/Cys) in the linear sequence differs between families and this is among the lines of evidence suggesting that cysteine peptidases have had many separate evolutionary origins. The families C1, C2, and C10 can be described as “papainlike,” and form clan CA. The papain family contains peptidases with a wide variety of activities, including endopeptidases with broad specificity, endopeptidases with narrow specificity, aminopeptidases, and peptidases with both endopeptidase and exopeptidase activities. Papain homologs are generally either lysosomal or secreted proteins. The calpain family includes the calcium-dependent cytosolic endopeptidase calpain, which is known from birds and mammals, and the product of the sol gene in Drosophila. Calpain is a complex of two peptide chains. Picornains are a family of polyprotein-processing endopeptidases from single-stranded RNA viruses. Each picornavirus has two picornains (2A and 3C).

References

  • 1.Rawlings N.D., Pearl L.H., Buttle D.J. Biol. Chem. Hoppe-Seyler. 1992;373:1211. doi: 10.1515/bchm3.1992.373.2.1211. [DOI] [PubMed] [Google Scholar]
  • 2.Enenkel C., Wolf D.H. J. Biol. Chem. 1993;268:7036. [PubMed] [Google Scholar]
  • 3.Laycock M.V., MacKay R.M., Di Fruscio M., Gallant J.W. FEBS Lett. 1991;292:115. doi: 10.1016/0014-5793(91)80847-v. [DOI] [PubMed] [Google Scholar]
  • 4.Chua K.Y., Stewart G.A., Thomas W.R., Simpson R.J., Dilworth R.J., Plozza T.M., Turner K.J. J. Exp. Med. 1988;167:175. doi: 10.1084/jem.167.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Sebti S.M., Deleon J.C., Lazo J.S. Biochemistry. 1987;26:4213. doi: 10.1021/bi00388a006. [DOI] [PubMed] [Google Scholar]
  • 6.Ritonja A., Rowan A.D., Buttle D.J., Rawlings N.D., Turk V., Barrett A.J. FEBS Lett. 1989;247:419. doi: 10.1016/0014-5793(89)81383-3. [DOI] [PubMed] [Google Scholar]
  • 7.Barrett A.J., Nicklin M.J.H., Rawlings N.D. Vol. 25. 1984. p. 203. (Symp. Biol. Hung.). [Google Scholar]
  • 8.Musil D., Zucic D., Turk D., Engh R.A., Mayr I., Huber R., Popovic T., Turk V., Towatari T., Katunuma N., Bode W. EMBO J. 1991;10:2321. doi: 10.1002/j.1460-2075.1991.tb07771.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Karrer K.M., Peiffer S.L., DiTomas M.E. Vol. 90. 1993. p. 3063. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Denizot F., Brunet J.-F., Roustan P., Harper K., Suzan M., Luciani M.-F., Mattei M.-G., Golstein P. Eur. J. Immunol. 1989;19:631. doi: 10.1002/eji.1830190409. [DOI] [PubMed] [Google Scholar]
  • 11.Kamphuis I.G., Kalk K.H., Swarte M.B.A., Drenth J. J. Mol. Biol. 1984;179:233. doi: 10.1016/0022-2836(84)90467-4. [DOI] [PubMed] [Google Scholar]
  • 12.Baker E.N. J. Mol. Biol. 1980;141:441. doi: 10.1016/0022-2836(80)90255-7. [DOI] [PubMed] [Google Scholar]
  • 17.Heinemann U., Pal G.P., Hilgenfeld R., Saenger W. J. Mol. Biol. 1982;161:591. doi: 10.1016/0022-2836(82)90410-7. [DOI] [PubMed] [Google Scholar]
  • 18.Felsenstein J. Evolution. 1985;39:783. doi: 10.1111/j.1558-5646.1985.tb00420.x. [DOI] [PubMed] [Google Scholar]
  • 19.Rich D.H. In: Proteinase Inhibitors. Barrett A.J., Salvesen G., editors. Elsevier; Amsterdam: 1986. p. 153. [Google Scholar]
  • 20.Shaw E. Adv. Enzymol. 1990;63:271. doi: 10.1002/9780470123096.ch5. [DOI] [PubMed] [Google Scholar]
  • 21.Delaney S.J., Hayward D.C., Barleben F., Fischbach K.F., Miklos G.L.G. Vol. 88. 1991. p. 7214. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.S. D. Elliott and T.-Y. Liu, this series, Vol. 19, p. 252.
  • 23.Tai J.Y., Kortt A.A., Liu T.-Y., Elliott S.D. J. Biol. Chem. 1976;251:1955. [PubMed] [Google Scholar]
  • 24.Kortt A.A., Liu T.-Y. Biochemistry. 1973;12:328. doi: 10.1021/bi00726a024. [DOI] [PubMed] [Google Scholar]
  • 25.Barrett A.J., Kembhavi A.A., Brown M.A., Kirschke H., Knight C.G., Tamai M., Hanada K. Biochem. J. 1982;201:189. doi: 10.1042/bj2010189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Yonaha K., Elliott S.D., Liu T.-Y. J. Protein Chem. 1982;1:317. [Google Scholar]
  • 27.Otogoto J.I., Kuramitsu H.K. Infect. Immun. 1993;61:117. doi: 10.1128/iai.61.1.117-123.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.R. Staden, this series, Vol. 183, p. 163.
  • 29.Palmenberg A.C., Parks G.D., Hall D.J., Ingraham R.H., Seng T.W., Pallai P.V. Virology. 1992;190:754. doi: 10.1016/0042-6822(92)90913-a. [DOI] [PubMed] [Google Scholar]
  • 30.Kean K.M., Teterina N., Girard M. J. Gen. Virol. 1990;71:2553. doi: 10.1099/0022-1317-71-11-2553. [DOI] [PubMed] [Google Scholar]
  • 31.Allaire M., Chernaia M.M., Malcolm B.A., James M.N.G. Nature. 1994;369:72. doi: 10.1038/369072a0. [DOI] [PubMed] [Google Scholar]
  • 32.Miyashita K., Kusumi M., Utsumi R., Katayama S., Noda M., Komano T., Satoh N. Protein Eng. 1993;6:189. doi: 10.1093/protein/6.2.189. [DOI] [PubMed] [Google Scholar]
  • 33.Dessens J.T., Lomonossoff G.P. Virology. 1991;184:738. doi: 10.1016/0042-6822(91)90444-g. [DOI] [PubMed] [Google Scholar]
  • 34.Bazan J.F., Fletterick R.J. Vol. 85. 1988. p. 7872. (Proc. Natl. Acad. Sci. U.S.A.). [Google Scholar]
  • 35.Lawson M.A., Semler B.L. Vol. 88. 1991. p. 9919. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Dougherty W.G., Parks T.D., Cary S.M., Bazan J.F., Metterick R.J. Virology. 1989;172:302. doi: 10.1016/0042-6822(89)90132-3. [DOI] [PubMed] [Google Scholar]
  • 37.Rower K., Parks T.D., Scheffler B., Bevan M., Dougherty W.G. J. Gen. Virol. 1992;73:775. doi: 10.1099/0022-1317-73-4-775. [DOI] [PubMed] [Google Scholar]
  • 38.Oh C.-S., Carrington J.C. Virology. 1989;173:692. doi: 10.1016/0042-6822(89)90582-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Murphy J.F., Rhoads R.E., Hunt A.G., Shaw J.G. Virology. 1990;178:285. doi: 10.1016/0042-6822(90)90405-g. [DOI] [PubMed] [Google Scholar]
  • 40.Grakoui A., McCourt D.W., Wychowski C., Feinstone S.M., Rice C.M. Proc. Nall. Acad. Sci. U.S.A. 1993;90:10583. doi: 10.1073/pnas.90.22.10583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Kräusslich H.-G., Wimmer E. Annu. Rev. Biochem. 1988;57:701. doi: 10.1146/annurev.bi.57.070188.003413. [DOI] [PubMed] [Google Scholar]
  • 42.Bhatti A.R., Weber J.M. Virology. 1979;96:478. doi: 10.1016/0042-6822(79)90105-3. [DOI] [PubMed] [Google Scholar]
  • 43.Webster A., Kemp G. J. Gen. Virol. 1993;74:1415. doi: 10.1099/0022-1317-74-7-1415. [DOI] [PubMed] [Google Scholar]
  • 44.Stram Y., Chetsrony A., Karchi H., Karchi M., Edelbaum O., Vardi E., Livneh O., Sela I. Virus Genes. 1993;7:151. doi: 10.1007/BF01702395. [DOI] [PubMed] [Google Scholar]
  • 45.Choi G.H., Shapira R., Nuss D.L. Vol. 88. 1991. p. 1167. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Choi G.H., Pawlyk D.M., Nuss D.L. Virology. 1991;183:747. doi: 10.1016/0042-6822(91)91004-z. [DOI] [PubMed] [Google Scholar]
  • 47.Shapira R., Nuss D.L. J. Biol. Chem. 1991;266:19419. [PubMed] [Google Scholar]
  • 48.Strauss E.G., De Groot R.J., Levinson R., Strauss J.H. Virology. 1992;191:932. doi: 10.1016/0042-6822(92)90268-T. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Baker S.C., Shieh C.K., Soe L.H., Chang M.F., Vannier D.M., Lai M.M.C. J. Virol. 1989;63:3693. doi: 10.1128/jvi.63.9.3693-3699.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Baker S.C., Yokomori K., Dong S., Carlisle R., Gorbalenya A.E., Koonin E.V., Lai M.M.C. J. Virol. 1993;67:6056. doi: 10.1128/jvi.67.10.6056-6063.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Bransom K.L., Dreher T.W. Virology. 1994;198:148. doi: 10.1006/viro.1994.1017. [DOI] [PubMed] [Google Scholar]
  • 52.Srifah P., Keese P., Weller G., Gibbs A. J. Gen. Virol. 1992;73:1437. doi: 10.1099/0022-1317-73-6-1437. [DOI] [PubMed] [Google Scholar]
  • 53.Keil B. Springer-Verlag; Berlin: 1992. Specificity of Proteolysis. [Google Scholar]
  • 54.Dargatz H., Diefenthal T., Witte V., Reipen G., Von Wettstein D. Mol. Gen. Genet. 1993;240:140. doi: 10.1007/BF00276893. [DOI] [PubMed] [Google Scholar]
  • 55.Kembhavi A.A., Buttle D.J., Rauber P., Barrett A.J. FEBS Lett. 1991;283:277. doi: 10.1016/0014-5793(91)80607-5. [DOI] [PubMed] [Google Scholar]
  • 56.Gilles A.-M., De Wolf A., Ked B. Eur. J. Biochem. 1983;130:473. doi: 10.1111/j.1432-1033.1983.tb07174.x. [DOI] [PubMed] [Google Scholar]
  • 57.Wilkinson K.D., Lee K., Deshpande S., Duerksen-Hughes P., Boss J.M., Pohl J. Science. 1989;246:670. doi: 10.1126/science.2530630. [DOI] [PubMed] [Google Scholar]
  • 58.Mayer A.N., Wilkinson K.D. Biochemistry. 1989;28:166. doi: 10.1021/bi00427a024. [DOI] [PubMed] [Google Scholar]
  • 59.Pickart C.M., Rose I.A. J. Biol. Chem. 1986;261:10210. [PubMed] [Google Scholar]
  • 60.Hershko A., Rose I.A. Vol. 84. 1987. p. 1829. (Proc. Natl. Acad. Sci. U.S.A.). [Google Scholar]
  • 61.Baker R.T., Tobias J.W., Varshavsky A. J. Biol. Chem. 1992;267:23364. [PubMed] [Google Scholar]
  • 62.Wilkinson K.D., Cox M.J., Mayer A.N., Frey T. Biochemistry. 1986;25:6644. doi: 10.1021/bi00369a047. [DOI] [PubMed] [Google Scholar]
  • 63.Miller H.I., Henzel W.J., Ridgway J.B., Kuang W.J., Chisholm V., Liu C.C. Bio/Technology. 1989;7:698. [Google Scholar]
  • 64.Tobias J.W., Varshavsky A. J. Biol. Chem. 1991;266:12021. [PubMed] [Google Scholar]
  • 65.Papa F.R., Hochstrasser M. Nature (London) 1993;366:313. doi: 10.1038/366313a0. [DOI] [PubMed] [Google Scholar]
  • 66.Davis A.H., Nanduri J., Watson D.C. J. Biol. Chem. 1987;262:12851. [PubMed] [Google Scholar]
  • 67.Gótz B., Klinkert M.-O. Biochem. J. 1993;290:801. doi: 10.1042/bj2900801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Kembhavi A.A., Buttle D.J., Knight C.G., Barrett A.J. Arch. Biochem. Biophys. 1993;303:208. doi: 10.1006/abbi.1993.1274. [DOI] [PubMed] [Google Scholar]
  • 69.Csoma C., Polgdr L. Biochem. J. 1984;222:769. doi: 10.1042/bj2220769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Thornberry N.A., Bull H.G., Calaycay J.R., Chapman K.T., Howard A.D., Kostura M.J., Miller D.K., Molineaux S.M., Weidner J.R., Aunins J., Elliston K.O., Ayala J.M., Casano F.J., Chin J., Ding G.J.-F., Egger L.A., Gaffney E.P., Limjuco G., Palyha O.C., Raju S.M., Rolando A.M., Salley J.P., Yamin T.-T., Tocci M.J. Nature (London) 1992;356:768. doi: 10.1038/356768a0. [DOI] [PubMed] [Google Scholar]
  • 71.Ray C.A., Black R.A., Kronheim S.R., Greenstreet T.A., Sleath P.R., Salvesen G.S., Pickup D.J. Cell (Cambridge, Mass.) 1992;69:597. doi: 10.1016/0092-8674(92)90223-y. [DOI] [PubMed] [Google Scholar]
  • 72.Yuan J., Shaham S., Ledoux S., Ellis H.M., Horvitz H.R. Cell (Cambridge, Mass.) 1993;75:641. doi: 10.1016/0092-8674(93)90485-9. [DOI] [PubMed] [Google Scholar]
  • 73.Miura M., Zhu H., Rotello R., Hartwieg E.A., Yuan J. Cell (Cambridge, Mass.) 1993;75:653. doi: 10.1016/0092-8674(93)90486-a. [DOI] [PubMed] [Google Scholar]
  • 74.McDonald J.K., Barrett A.J. Academic Press; London: 1986. (Mammalian Proteases: A Glossary and Bibliography. Volume 2: Exopeptidases). [Google Scholar]
  • 75.Fujiwara K., Matsumoto E., Kitagawa T., Tsuru D. Biochim. Biophys. Acta. 1980;702:149. doi: 10.1016/0167-4838(82)90496-4. [DOI] [PubMed] [Google Scholar]
  • 76.Yoshimoto T., Shimoda T., Kitazono A., Kabashima T., Ito K., Tsuru D. J. Biochem. (Tokyo) 1993;113:67. doi: 10.1093/oxfordjournals.jbchem.a124005. [DOI] [PubMed] [Google Scholar]
  • 77.Urade R., Nasu M., Moriyama T., Wada K., Kito M. J. Biol. Chem. 1992;267:15152. [PubMed] [Google Scholar]
  • 78.Dyson H.J., Gippert G.P., Case D.A., Holmgren A., Wright P.E. Biochemistry. 1990;29:4129. doi: 10.1021/bi00469a016. [DOI] [PubMed] [Google Scholar]
  • 79.Strom M.S., Lory S. J. Biol. Chem. 1991;266:1656. [PubMed] [Google Scholar]
  • 80.Strom M.S., Bergman P., Lory S. J. Biol. Chem. 1993;268:15788. [PubMed] [Google Scholar]
  • 81.Nunn D.N., Lory S. Vol. 88. 1991. p. 3281. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Strom M.S., Lory S. J. Bacteriol. 1992;174:7345. doi: 10.1128/jb.174.22.7345-7351.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Strom M.S., Nunn D.N., Lory S. Vol. 90. 1993. p. 2404. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Kaufman M.R., Seyer J.M., Taylor R.K. Genes Dev. 1991;5:1834. doi: 10.1101/gad.5.10.1834. [DOI] [PubMed] [Google Scholar]
  • 85.James M.N.G. In: Proteolysis and Protein Turnover. Bond J.S., Barrett A.J., editors. Portland Press; London: 1993. p. 1. [Google Scholar]
  • 86.Salvesen G. In: Proteolysis and Protein Turnover. Bond J.S., Barrett A.J., editors. Portland Press; London: 1993. p. 57. [Google Scholar]

Articles from Methods in Enzymology are provided here courtesy of Elsevier

RESOURCES