Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Apr 19;74(1):93–103. doi: 10.1016/0092-8674(93)90297-4

A novel programed frameshift expresses the POL3 gene of retrotransposon Ty3 of yeast: Frameshifting without tRNA slippage

Philip J Farabaugh 1, Hong Zhao 1, Arunachalam Vimaladithan 1
PMCID: PMC7172889  PMID: 8267715

Abstract

Most retroviruses and retrotransposons express their pol gene as a translational fusion to the upstream gag gene, often involving translational frameshifting. We describe here an unusual translational frameshift event occurring between the GAG3 and POL3 genes of the retrotransposon Ty3 of yeast. A +1 frameshift occurs within the sequence GCG AGU U (shown as codons of GAG3), encoding alanine-valine (GCG A GUU). Unlike other programed translational frameshifts described, this event does not require tRNA slippage between cognate or near-cognate codons in the mRNA. Two features distal to the GCG codon stimulate frameshifting. The low availability of the tRNA specific for the “hungry” serine codon, AGU, induces a translational pause required for frameshifting. A sequence of 12 nt distal to the AGU codon (termed the Ty3. “context”) also stimulates the event.

References

  1. Atkins J.F., Weiss R.B., Gesteland R.F. Ribosome gymnastics—degree of difficulty 9.5, style 10.0. Cell. 1990;62:413–423. doi: 10.1016/0092-8674(90)90007-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atkins J.F., Weiss R.B., Thompson S., Gesteland R.F. Towards a genetic dissection of the basis of triplet decoding, and its natural subversion: programmed reading frame shifts and hops. Annu. Rev. Genet. 1991;25:201–228. doi: 10.1146/annurev.ge.25.120191.001221. [DOI] [PubMed] [Google Scholar]
  3. Ayer D., Yarus M. The context effect does not require a fourth base pair. Science. 1986;231:393–395. doi: 10.1126/science.3510456. [DOI] [PubMed] [Google Scholar]
  4. Belcourt M.F., Farabaugh P.J. Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site. Cell. 1990;62:339–352. doi: 10.1016/0092-8674(90)90371-K. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benhar I., Engelberg-Kulka H. Frameshifting in the expression of the E. coli trpR gene occurs by the bypassing of a segment of its coding sequence. Cell. 1993;72:121–130. doi: 10.1016/0092-8674(93)90056-v. [DOI] [PubMed] [Google Scholar]
  6. Bossi L., Smith D.M. Vol. 81. 1984. Suppressor sufJ: a novel type of tRNA mutant that induces translational frameshifting; pp. 6105–6109. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chalker D.L., Sandmeyer S.B. Transfer RNA genes are genomic targets for de novo transposition of the yeast retrotransposon Ty3. Genetics. 1990;126:837–850. doi: 10.1093/genetics/126.4.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Craigen W.J., Caskey C.T. Expression of peptide chain release factor 2 requires high-efficiency frameshift. Nature. 1986;322:273–275. doi: 10.1038/322273a0. [DOI] [PubMed] [Google Scholar]
  9. Curran J., Yarus M. Reading frame selection and transfer RNA anticodon loop stacking. Science. 1987;238:1545–1550. doi: 10.1126/science.3685992. [DOI] [PubMed] [Google Scholar]
  10. Curran J., Yarus M. Use of tRNA suppressors to probe regulation of Escherichia coli release factor 2. J. Mol. Biol. 1988;203:75–83. doi: 10.1016/0022-2836(88)90092-7. [DOI] [PubMed] [Google Scholar]
  11. Dix D.B., Thompson R.C. Vol. 86. 1989. Codon choice and gene expression: synonymous codons differ in translational accuracy; pp. 6888–6892. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Farabaugh P., Liao X.-B., Belcourt M., Zhao H., Kapakos J., Clare J. Enhancer and silencerlike sites within the transcribed portion of a Ty2 transposable element of Saccharomyces cerevisiae. Mol. Cell. Biol. 1989;9:4824–4834. doi: 10.1128/mcb.9.11.4824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Farabaugh P., Vimaladithan A., Türkel S., Johnson R., Zhao H. Three downstream sites repress transcription of a Ty2 retrotransposon in Saccharomyces cerevisiae. Mol. Cell. Biol. 1993;13:2081–2090. doi: 10.1128/mcb.13.4.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gallant J., Foley D. On the causes and prevention of mistranslation. In: Chambliss G., Craven G., Davies R., Davis J., Kahan J., Nomura M., editors. Ribosomes: Structure, Function and Genetics. University Park Press; Baltimore: 1980. pp. 615–638. [Google Scholar]
  15. Gesteland R., Weiss R., Atkins J. Recoding: reprogrammed genetic decoding. Science. 1992;257:1640–1641. doi: 10.1126/science.1529352. [DOI] [PubMed] [Google Scholar]
  16. Hansen L., Sandmeyer S. Characterization of a transpositionally active Ty3 element and identification of the Ty3 IN protein. J. Virol. 1990;64:2599–2607. doi: 10.1128/jvi.64.6.2599-2607.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hansen L., Chalker D., Sandmeyer S. Ty3, a retrotransposon associated with tRNA genes, has homology to animal retroviruses. Mol. Cell. Biol. 1988;8:5245–5256. doi: 10.1128/mcb.8.12.5245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hansen L., Chalker D., Orlinsky K., Sandmeyer S. Ty3 GAG3 and POL3 genes encode the components of intracellular particles. J. Virol. 1992;66:1414–1424. doi: 10.1128/jvi.66.3.1414-1424.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hughes D., Atkins J.F., Thompson S. Mutants of elongation factor Tu promote ribosomal frameshifting and nonsense readthrough. EMBO J. 1987;6:4235–4239. doi: 10.1002/j.1460-2075.1987.tb02772.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 1983;153:163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jacks T. Translational suppression in gene expression in retroviruses and retrotransposons. Curr. Topics Microbiol. Immunol. 1990;157:93–124. doi: 10.1007/978-3-642-75218-6_4. [DOI] [PubMed] [Google Scholar]
  22. Kalnik M.W., Norman D.G., Swann P.F., Patel D.J. Conformation of adenosine bulge-containing deoxytridecanucleotide duplexes in solution. J. Biol. Chem. 1989;264:3702–3712. [PubMed] [Google Scholar]
  23. Kirchner J., Sandmeyer S., Forrest D. Transposition of a Ty3 GAG3-POL3 fusion mutant is limited by availability of capsid protein. J. Virol. 1992;66:6081–6092. doi: 10.1128/jvi.66.10.6081-6092.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kurland C., Gallant J. The secret life of the ribosome. In: Kirkwood T., Rosenberger R., Galas D., editors. Accuracy in Molecular Processes. Chapman & Hall; London: 1986. pp. 127–157. [Google Scholar]
  25. Kurland C.G. Translational accuracy and the fitness of bacteria. Annu. Rev. Genet. 1992;26:29–50. doi: 10.1146/annurev.ge.26.120192.000333. [DOI] [PubMed] [Google Scholar]
  26. Moazed D., Noller H.F. Intermediate states in the movement of transfer RNA in the ribosome. Nature. 1989;342:142–148. doi: 10.1038/342142a0. [DOI] [PubMed] [Google Scholar]
  27. Peter K., Lindsley D., Peng L., Gallant J.A. Context rules of rightward overlapping reading. New Biol. 1992;4:520–526. [PubMed] [Google Scholar]
  28. Quigley G.J., Rich A. Structural domains of transfer RNA molecules. Science. 1976;194:796–806. doi: 10.1126/science.790568. [DOI] [PubMed] [Google Scholar]
  29. Rose M., Winston F., Hieter P. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, New York: 1990. Methods in Yeast Genetics. [Google Scholar]
  30. Sandbaken M.G., Culbertson M.R. Mutations in elongation factor EF-1α affect the frequency of frameshifting and amino acid misincorporation in Saccharomyces cerevisiae. Genetics. 1988;120:923–934. doi: 10.1093/genetics/120.4.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Smith D., Yarus M. Vol. 86. 1989. tRNA-tRNA interactions within cellular ribosomes; pp. 4397–4401. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Spanjaard R., van Duin J. Vol. 85. 1988. Translation of the sequence AGG-AGG yields 50% ribosomal frameshift; pp. 7967–7971. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Spanjaard R., Chen K., Walker J., van Duin J. Frameshift suppression at tandem AGA and AGG codons by cloned tRNA genes: assigning a codon to argU tRNA and T4 tRNAArg. Nucl. Acids Res. 1990;18:5031–5036. doi: 10.1093/nar/18.17.5031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. ten Dam E., Pleij C., Bosch L. RNA pseudoknots: translational frameshifting and readthrough of viral RNAs. Virus Genes. 1990;4:121–136. doi: 10.1007/BF00678404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Thomas L.K., Dix D.B., Thompson R.C. Vol. 85. 1988. Codon choice and gene expression: synonymous codons differ in their ability to direct aminoacylated-transfer RNA binding to ribosomes in vitro; pp. 4242–4246. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tu C., Tzeng T.H., Bruenn J.A. Vol. 89. 1992. Ribosomal movement impeded at a pseudoknot required for frameshifting; pp. 8636–8640. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tuohy T., Thompson S., Gesteland R., Atkins J. Seven, eight and nine-membered anticodon loop mutants of tRNAArg2 which cause +1 frameshifting. J. Mol. Biol. 1992;228:1042–1054. doi: 10.1016/0022-2836(92)90313-9. [DOI] [PubMed] [Google Scholar]
  38. Tuohy T.M.F., Thompson S., Gesteland R.F., Hughes D., Atkins J.F. The role of EF-Tu and other translation components in determining translocation step size. Biochim. Biophys. Acta. 1990;1050:274–278. doi: 10.1016/0167-4781(90)90180-a. [DOI] [PubMed] [Google Scholar]
  39. Vijgenboom E., Bosch L. Translational frameshifts induced by mutant species of the polypeptide chain elongation factor Tu of Escherichia coli. J. Biol. Chem. 1989;264:13012–13017. [PubMed] [Google Scholar]
  40. Weiss R., Gallant J. Mechanism of ribosome frameshifting during translation of the genetic code. Nature. 1983;302:389–393. doi: 10.1038/302389a0. [DOI] [PubMed] [Google Scholar]
  41. Weiss R., Gallant J. Frameshift suppression of aminoacyl-tRNA limited cells. Genetics. 1986;112:727–739. doi: 10.1093/genetics/112.4.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Weiss R., Dunn D., Dahlberg A., Atkins J., Gesteland R. Reading frame switch caused by base-pair formation between the 3′ end of 16S rRNA and the mRNA during elongation of protein synthesis in Escherichia coli. EMBO J. 1988;7:1503–1507. doi: 10.1002/j.1460-2075.1988.tb02969.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Weiss R.B., Huang W.M., Dunn D.M. A nascent peptide is required for ribosomal bypass of the coding gap in bacteriophage T4 gene 60. Cell. 1990;62:117–126. doi: 10.1016/0092-8674(90)90245-A. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Weiss R.B., Dunn D.M., Atkins J.F., Gesteland R.F. Vol. 52. 1987. Slippery runs, shifty stops, backward steps, and forward hops: −2, −1, +1, +2, +5, and +6 ribosomal frameshifting; pp. 687–693. (Cold Spring Harbor Symp. Quant. Biol.). [DOI] [PubMed] [Google Scholar]
  45. Weiss R.B., Lindsley D., Falahee B., Gallant J. On the mechanism of ribosomal frameshifting at hungry codons. J. Mol. Biol. 1988;203:403–410. doi: 10.1016/0022-2836(88)90008-3. [DOI] [PubMed] [Google Scholar]
  46. Williams J.M., Donly B.C., Brown C.M., Adamski F.M., Trotman C.N.A., Tate W.P. Frameshifting in the synthesis of Escherichia coli polypeptide chain release factor two on eukaryotic ribosomes. Eur. J. Biochem. 1989;186:515–521. doi: 10.1111/j.1432-1033.1989.tb15237.x. [DOI] [PubMed] [Google Scholar]

Articles from Cell are provided here courtesy of Elsevier

RESOURCES