Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 9;172(1):25–31. doi: 10.1016/0042-6822(89)90103-7

Inhibition of proteolytic activation of influenza virus hemagglutinin by specific peptidyl chloroalkyl ketones

Wolfgang Garten ∗,1, Andrea Stieneke , Elliott Shaw , Peter Wikstrom , Hans-Dieter Klenk
PMCID: PMC7173068  PMID: 2773317

Abstract

Lysates of cultured cells have been analyzed for arginine-specific endoproteases using peptidyl-p-n itroanil ides as chromogenic substrates. The enzymes present in MDBK, MDCK, VERO, BHK, and chick embryo cells required lysinearginine or arginine-arginine pairs as cleavage sites, whereas chorioallantoic membrane cells contained, in addition, an activity that could cleave at a single arginine. The effect of peptidyl chloroalkyl ketones on the activation of the fowl plague virus hemagglutinin by the proteases specific for paired basic residues has been investigated. When virions containing uncleaved hemagglutinin were incubated with lysates of uninfected cells, cleavage was completely inhibited by peptidyl chloroalkyl ketones containing paired basic residues at a concentration of 1 mM. In contrast a compound containing a single arginine had no inhibitory activity. When dibasic peptidyl chloroalkyl ketones were added to infected cell cultures, cleavage of hemagglutinin and multiple cycles of virus replication were inhibited at 10 mM. However, a 100-to 200-fold increase of the inhibitory activity in intact cells could be achieved by N-terminal acylation. These studies suggest a potential role of peptidyl chloroalkyl ketones as antiviral agents

References

  1. Binns M.M., Boursnell M E.G., Cavanagh D., Pappin D.J.C., Brown T.D.K. Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV. J. Gen. Virol. 1985;66:719–726. doi: 10.1099/0022-1317-66-4-719. [DOI] [PubMed] [Google Scholar]
  2. Davidson H.W., Peshavaria M., Hut-Ton J.C. Proteo-lytic conversion of proinsulin into insulin. Biochem. J. 1987;246:279–286. doi: 10.1042/bj2460279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Davidson H.W., Rhodes C.J., Hutton J.C. Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic β cell via two distinct site-specific endopeptidases. Nature (London) 1988;333:93–96. doi: 10.1038/333093a0. [DOI] [PubMed] [Google Scholar]
  4. Docherty K., Carroll R.J., Steiner D.F. Vol. 79. 1982. Conversion of proinsulin to insulin: Involvement of 31,500 molecular weight thiol protease; pp. 4613–4617. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Garten W., Bosch F.X., Linder D., Rott, R., Klenk H.-D. Proteolytic activation of the influenza hemagglutinin: The structure of the cleavage site and the enzymes involved in cleavage. Virology. 1981;115:361–374. doi: 10.1016/0042-6822(81)90117-3. [DOI] [PubMed] [Google Scholar]
  6. Herbert E., Uhler M. Biosynthesis of polyprotein precursors to regulatory peptides. Cell. 1982;30:1–2. doi: 10.1016/0092-8674(82)90002-2. [DOI] [PubMed] [Google Scholar]
  7. Kawaoka Y., Webster R.G. Vol. 85. 1988. Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cells; pp. 324–328. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kettner C., Shaw E. Inactivation of trypsin-like enzymes with peptides of arginine chloromethyl ketone. In: Lorand L., editor. Vol. 80. Academic Press; New York: 1981. pp. 826–842. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]
  9. Klenk H.-D., Garten W., Keil W., Niemann H., Bosch F.X., Schwarz R.T., Scholtissek C., Rott R. Processing of hemagglutinin. In: Nayak D.P., editor. Genetic Variation among Influenza Viruses. Academic Press; New York: 1981. pp. 193–212. [Google Scholar]
  10. Klenk H.-D., Garten W., Rott R. Inhibition of proteolytic cleavage of the hemagglutinin of influenza virus by calciumspecific ionophore A23187. EMBO J. 1984;3:2911–2915. doi: 10.1002/j.1460-2075.1984.tb02231.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Klenk H.-D., Rott R. The molecular basis of influenza virus pathogenicity. Adv. Virus Res. 1988;34:247–281. doi: 10.1016/S0065-3527(08)60520-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klenk H.-D., Rott R., Orlich M. Further studies on the activation of influenza virus by proteolytic cleavage of the hemagglutinin. J. Gen. Virol. 1977;36:151–161. doi: 10.1099/0022-1317-36-1-151. [DOI] [PubMed] [Google Scholar]
  13. Klenk H.-D., Rott R., Orlich M., Blödorn, J. Activation of influenza A virus by trypsin treatment. Virology. 1975;68:426–439. doi: 10.1016/0042-6822(75)90284-6. [DOI] [PubMed] [Google Scholar]
  14. Korant B., Chow N., Lively M., Powers J. Vol. 76. 1979. Virus specified protease in poliovirus-infected HeLa cells; pp. 2992–2995. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kuroda K., Hauser C., Rott R., Klenk H.-D., Doerfler W. Expression of the influenza virus hemagglutinin in insect cells by a baculovirus vector. EMBO J. 1986;5:1359–1365. doi: 10.1002/j.1460-2075.1986.tb04367.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of the bacteriophage T 4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Lazarowitz S., Choppin P.W. Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology. 1975;68:440–455. doi: 10.1016/0042-6822(75)90285-8. [DOI] [PubMed] [Google Scholar]
  18. Lazarowitz S., Compans R.W., Choppin P.W. Proteolytic cleavage of the hemagglutinin polypeptide of influenza virus. Function of the uncleaved polypeptide HA. Virology. 1973;52:199–212. doi: 10.1016/0042-6822(73)90409-1. [DOI] [PubMed] [Google Scholar]
  19. McCune J.M., Rabin L.B., Feinberg M.B., Lieberman M., Kosek J.C., Reyes G.R., Weissman I.L. Endoproteolytic cleavage of gpl 60 is required for the activation of human immunodeficiency virus. Cell. 1988;53:55–67. doi: 10.1016/0092-8674(88)90487-4. [DOI] [PubMed] [Google Scholar]
  20. Ohuchi M., Orlich M., Ohuchi R., Simpson B.E.J., Garten W., Klenk H.-D., Rott R. Mutations at the cleavage site of the hemagglutinin alter the pathogenicity of influenza virus A/ chick/Penn/83 (H5N2) Virology. 1989;168:274–280. doi: 10.1016/0042-6822(89)90267-5. [DOI] [PubMed] [Google Scholar]
  21. Parish D.C., Tuteja R., Altstfin M., Gainer H., Loh Y.P. Purification and characterization of a paired basic residuespecific prohormone-converting enzyme from bovine pituitary neural lobe secretory vesicles. J. Biol. Chem. 1986;261:14,392–14,397. [PubMed] [Google Scholar]
  22. Paterson R.G., Harris T.J.R., Lamb R.A. Vol. 81. 1984. Fusion protein of the paramyxovirus SV5: Nucleotide sequence of mRNA predicts a highly hydrophobic glycoprotein; pp. 6706–6710. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Romanowski V., Matsuura Y., Bishop D.H.L. Complete sequence of the sRNA of lymphocytic choriomeningitis virus (WE strain) compared to that of Pichinde arenavirus. Virus Res. 1985;3:101–114. doi: 10.1016/0168-1702(85)90001-2. [DOI] [PubMed] [Google Scholar]
  24. Scheid A., Choppin P.W. Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis, and infectivity by proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology. 1974;57:475–490. doi: 10.1016/0042-6822(74)90187-1. [DOI] [PubMed] [Google Scholar]
  25. Shinnick T.M., Lerner R.A., Sutcliffe J.G. Nucleotide sequence of moloney murine leukaemia virus. Nature (London) 1981;293:543–548. doi: 10.1038/293543a0. [DOI] [PubMed] [Google Scholar]
  26. Tashiro M., Ciborowski P., Reinacher M., Pulverer G., Klenk H.-D., Rott R. Synergistic role of staphylococcal proteases in the induction of influenza virus pathogenicity. Virology. 1987;157:421–430. doi: 10.1016/0042-6822(87)90284-4. [DOI] [PubMed] [Google Scholar]
  27. Tashiro M., Ciborowski P., Klenk H.-D., Pulverer G., Rott R. Role of staphylococcus protease in development of influenza pneumonia. Nature)(London) 1987;325:536–537. doi: 10.1038/325536a0. [DOI] [PubMed] [Google Scholar]
  28. Thomas G., Thorne B.A., Thomas L., Allen R.G., Hruby D., Fuller R., Thornier J. Yeast KEX2 endopeptidase cleaves a neuroendocrine prohormone in mammalian cells. Science. 1988;241:226–230. doi: 10.1126/science.3291117. [DOI] [PubMed] [Google Scholar]
  29. Wikstrom P., Kirschke H., Stone S., Shaw E. The properties of peptidyl diazoethanes and chloroethanes as protease inactivators. Arch. Biochem. Biophys. 1989 doi: 10.1016/0003-9861(89)90030-1. in press. [DOI] [PubMed] [Google Scholar]
  30. Zhirnov O.P., Ovcharenko A.V., Burrinskaya A.G. Protective effect of protease inhibitors in influenza virus infected animals. Arch. Virol. 1982;73:263–272. doi: 10.1007/BF01318080. [DOI] [PubMed] [Google Scholar]
  31. Zhirnov 0.P., Ovcharenko A.V., Bukrinskaya A.G. Proteolytic activation of influenza WSN virus in cultured cells is performed by homologous plasma enzymes. J. Gen. Virol. 1982;63:469–474. doi: 10.1099/0022-1317-63-2-469. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES